Skip to main content

A Hybrid FMM-CART Model for Fault Detection and Diagnosis of Induction Motors

  • Conference paper
Neural Information Processing (ICONIP 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7064))

Included in the following conference series:

  • 2726 Accesses

Abstract

A new approach to detect and classify fault conditions of induction motors using a hybrid Fuzzy Min-Max (FMM) neural network and the Classification and Regression Tree (CART) is proposed. The hybrid model, known as FMM-CART, exploits the advantages of both FMM and CART for undertaking data classification and rule extraction problems. A series of experiments using real data measurements of motor currents from healthy and faulty induction motors is conducted. FMM-CART is able to detect and classify the associated inductor motor faults with good accuracy rates. Useful rules in the form of a decision tree are also elicited from FMM-CART to analyze and understand different fault conditions of induction motors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cusidó, J., Romeral, L., Ortega, J.A., Rosero, J.A., Espinosa, A.G.: Fault Detection in Induction Machines Using Power Spectral Density in Wavelet Decomposition. IEEE Trans. Industrial Electronics 55, 633–643 (2008)

    Article  Google Scholar 

  2. Almeida, A.T.: Energy Using Product Directive Preparatory Study, Lot 11: Motors, Analysis of Existing Technical and Market Information. DG TREN (2006)

    Google Scholar 

  3. Commission of the European Communities, Full Impact Assessment, C(2009) 5675, SEC(2009) 1014 (2009)

    Google Scholar 

  4. Rodríguez, P.V.J., Negrea, M., Arkkioa, A.: A Simplified Scheme for Induction Motor Condition Monitoring. Mechanical System and Signal Processing 22, 1216–1236 (2008)

    Article  Google Scholar 

  5. Tran, V.T., Yang, B.S., Oh, M.S., Tan, A.C.C.: Fault Diagnosis of Induction Motor Based on Decision Trees and Adaptive Neuro-Fuzzy Inference. Expert Systems with Applications 36, 1840–1849 (2009)

    Article  Google Scholar 

  6. Palmero, G.I.S., Santamaria, J.J., de la Torrea, E.J.M., González, J.R.P.: Fault Detection and Fuzzy Rule Extraction in AC Motors by a Neuro-Fuzzy ART-Based System. Engineering Applications of Artificial Intelligence 18, 867–874 (2005)

    Article  Google Scholar 

  7. Simpson, P.K.: Fuzzy Min-Max Neural Networks - Part 1: Classification. IEEE Trans. Neural Networks 3, 776–786 (1992)

    Article  Google Scholar 

  8. Simpson, P.K.: Fuzzy Min-Max Neural Networks - Part 2: Clustering. IEEE Trans Fuzzy Systems 1, 32–45 (1993)

    Article  Google Scholar 

  9. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Chapman and Hall, Belmont (1984)

    Google Scholar 

  10. Lewis, R. J.: An Introduction to Classification and Regression Tree (CART) Analysis. Society for Academic Emergency Medicine (2000)

    Google Scholar 

  11. Herman, P., Prasad, G., McGinnity, T.M., Coyle, D.: Comparative Analysis of Spectral Approaches to Feature Extraction for EEG-Based Motor Imagery Classification. IEEE Trans. Neural Systems and Rehabilitation Engineering 16, 317–326 (2008)

    Article  Google Scholar 

  12. IEEE Motor Reliability Working Group, Report of Large Motor Reliability Survey of Industrial and Commercial Installations, Part I. IEEE Trans. Industrial Applications 21, 853–864 (1985)

    Google Scholar 

  13. Awadallah, M.A., Morcos, M.M.: Application of AI Tools in Fault Diagnosis of Electrical Machines and Drives-An Overview. IEEE Trans. Energy Conversion 18, 245–251 (2003)

    Article  Google Scholar 

  14. Rosero, J.A., Cusido, J., Garcia, A., Ortega, J.A., Romeral, L.: Broken Bearings and Eccentricity Fault Detection for a Permanent Magnet Synchronous Motor. In: IECON 2006 32nd Annual Conference on IEEE Industrial Electronics, pp. 964–969. IEEE Press, New York (2006)

    Chapter  Google Scholar 

  15. Pedra, J., Sainz, L., Córcoles, F.: Harmonic modeling of induction motors. Electric Power Systems Research 76, 936–944 (2006)

    Article  Google Scholar 

  16. Efron, B.: Bootstrap Methods: Another Look at the Jackknife. Annals of Statistics 7, 1–26 (1979)

    Article  MATH  Google Scholar 

  17. Lee, G.M., Lee, D.C., Seok, J.K.: Control of Series Active Power Filters Compensating for Source Voltage Unbalance and Current Harmonics. IEEE Trans. Industrial Electronics 51, 132–139 (2004)

    Article  Google Scholar 

  18. Nandi, S., Ilamparithi, T.C., Lee, S.B., Hyun, D.: Detection of Eccentricity Faults in Induction Machines Based on Nameplate Parameters. IEEE Trans. Industrial Electronics 58, 1673–1683 (2011)

    Article  Google Scholar 

  19. Briz, F., Degner, M.W., Guerrero, J.M., García, P.: Stator Windings Fault Diagnostics of Induction Machines Operated From Inverters and Soft-Starters Using High-Frequency Negative-Sequence Currents. IEEE Trans. Industrial Applications 45, 1637–1646 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Seera, M., Lim, C., Ishak, D. (2011). A Hybrid FMM-CART Model for Fault Detection and Diagnosis of Induction Motors. In: Lu, BL., Zhang, L., Kwok, J. (eds) Neural Information Processing. ICONIP 2011. Lecture Notes in Computer Science, vol 7064. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24965-5_82

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24965-5_82

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24964-8

  • Online ISBN: 978-3-642-24965-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics