Skip to main content

On Minimizing Ordered Weighted Regrets in Multiobjective Markov Decision Processes

  • Conference paper
Algorithmic Decision Theory (ADT 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6992))

Included in the following conference series:

Abstract

In this paper, we propose an exact solution method to generate fair policies in Multiobjective Markov Decision Processes (MMDPs). MMDPs consider n immediate reward functions, representing either individual payoffs in a multiagent problem or rewards with respect to different objectives. In this context, we focus on the determination of a policy that fairly shares regrets among agents or objectives, the regret being defined on each dimension as the opportunity loss with respect to optimal expected rewards. To this end, we propose to minimize the ordered weighted average of regrets (OWR). The OWR criterion indeed extends the minimax regret, relaxing egalitarianism for a milder notion of fairness. After showing that OWR-optimality is state-dependent and that the Bellman principle does not hold for OWR-optimal policies, we propose a linear programming reformulation of the problem. We also provide experimental results showing the efficiency of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altman, E.: Constrained Markov Decision Processes. CRC Press, Boca Raton (1999)

    MATH  Google Scholar 

  2. Boutilier, C.: Sequential optimality and coordination in multiagent systems. In: Proc. IJCAI (1999)

    Google Scholar 

  3. Chatterjee, K., Majumdar, R., Henzinger, T.: Markov decision processes with multiple objectives. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 325–336. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Desrosiers, J., Luebbecke, M.: A primer in column generation. In: Desaulniers, G., Desrosier, J., Solomon, M. (eds.) column generation, pp. 1–32. Springer, Heidelberg (2005)

    Google Scholar 

  5. Furukawa, N.: Vector-valued Markovian decision processes with countable state space. In: Recent Developments in MDPs, vol. 36, pp. 205–223 (1980)

    Google Scholar 

  6. Geoffrion, A.: Proper efficiency and the theory of vector maximization. J. Math. Anal. Appls. 22, 618–630 (1968)

    Article  MathSciNet  Google Scholar 

  7. Guestrin, C., Koller, D., Parr, R.: Multiagent planning with factored MDPs. In: NIPS (2001)

    Google Scholar 

  8. Hansen, P.: Bicriterion Path Problems. In: Multiple Criteria Decision Making Theory and Application, pp. 109–127. Springer, Heidelberg (1979)

    Google Scholar 

  9. Kostreva, M., Ogryczak, W., Wierzbicki, A.: Equitable aggregations and multiple criteria analysis. Eur. J. Operational Research 158, 362–367 (2004)

    Article  MathSciNet  Google Scholar 

  10. Littman, M.L., Dean, T.L., Kaelbling, L.P.: On the complexity of solving Markov decision problems. In: UAI, pp. 394–402 (1995)

    Google Scholar 

  11. Llamazares, B.: Simple and absolute special majorities generated by OWA operators. Eur. J. Operational Research 158, 707–720 (2004)

    Article  MathSciNet  Google Scholar 

  12. Marshall, A., Olkin, I.: Inequalities: Theory of Majorization and its Applications. Academic Press, London (1979)

    MATH  Google Scholar 

  13. Mouaddib, A.: Multi-objective decision-theoretic path planning. IEEE Int. Conf. Robotics and Automation 3, 2814–2819 (2004)

    Google Scholar 

  14. Ogryczak, W., Sliwinski, T.: On solving linear programs with the ordered weighted averaging objective. Eur. J. Operational Research 148, 80–91 (2003)

    Article  MathSciNet  Google Scholar 

  15. Puterman, M.: Markov decision processes: discrete stochastic dynamic programming. Wiley, Chichester (1994)

    Book  Google Scholar 

  16. Steuer, R.: Multiple criteria optimization. John Wiley, Chichester (1986)

    MATH  Google Scholar 

  17. Viswanathan, B., Aggarwal, V., Nair, K.: Multiple criteria Markov decision processes. TIMS Studies in the Management Sciences 6, 263–272 (1977)

    Google Scholar 

  18. White, D.: Multi-objective infinite-horizon discounted Markov decision processes. J. Math. Anal. Appls. 89, 639–647 (1982)

    Article  MathSciNet  Google Scholar 

  19. Yager, R.: On ordered weighted averaging aggregation operators in multi-criteria decision making. IEEE Trans. on Syst., Man and Cyb. 18, 183–190 (1988)

    Article  Google Scholar 

  20. Yager, R.: Decision making using minimization of regret. Int. J. of Approximate Reasoning 36, 109–128 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ogryczak, W., Perny, P., Weng, P. (2011). On Minimizing Ordered Weighted Regrets in Multiobjective Markov Decision Processes. In: Brafman, R.I., Roberts, F.S., Tsoukiàs, A. (eds) Algorithmic Decision Theory. ADT 2011. Lecture Notes in Computer Science(), vol 6992. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24873-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24873-3_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24872-6

  • Online ISBN: 978-3-642-24873-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics