Skip to main content

Finite Element Analysis of the Initiation of Landslides with a Non-isothermal Multiphase Model

  • Chapter
Mechanics, Models and Methods in Civil Engineering

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 61))

Abstract

Finite element analysis of the initiation of landslides due to capillary and water pressure variation is presented in this work. To this aim, a non-isothermal elasto-plastic multiphase material model for soils is used. Soils are modelled as a three-phase deforming porous continuum where heat, water and gas flow are taken into account. In particular, the gas phase is modelled as an ideal gas composed of dry air and water vapor. Phase changes of water, heat transfer through conduction and convection and latent heat transfer are considered. The macroscopic balance equations are discretized in space and time within the finite element method. The independent variables are the solid displacements, the capillary and the gas pressure and the temperature. The effective stress state is limited by Drucker-Prager yield surface for simplicity. Small strains and quasi-static loading conditions are assumed. Numerical simulation of a slope stability experiment is presented assuming plane strain condition during the computations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Klubertanz, G.: Zur hydromechanischen Kopplung in dreiphasigen porösen Medien. Thesis 2027, Ecole Polytechnique Fédérale de Lausanne, Lausanne (1999) (in German)

    Google Scholar 

  2. Klubertanz, G., Bouchelaghem, F., Laloui, L., Vulliet, L.: Miscible and immiscible multiphase flow in deformable porous media. Math. Comput. Model 37, 571–582 (2003)

    Article  MATH  Google Scholar 

  3. Lewis, R.W., Schrefler, B.A.: The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media. John Wiley & Sons, Chichester (1998)

    MATH  Google Scholar 

  4. Sanavia, L., Pesavento, F., Schrefler, B.A.: Finite element analysis of non-isothermal multiphase geomaterials with application to strain localisation simulation. Comput. Mech. 37(4), 331–348 (2006)

    Article  MATH  Google Scholar 

  5. Gawin, D., Baggio, P., Schrefler, B.A.: Coupled heat, water and gas flow in deformable porous media. Int. J. Numer. Meth. Fluid 20(7), 967–987 (1995)

    Google Scholar 

  6. Schrefler, B.A.: Mechanics and Thermodynamics of Saturated-Unsaturated Porous Materials and Quantitative Solutions. Appl. Mech. Rev. 55(4), 351–388 (2002)

    Article  Google Scholar 

  7. Goldstein, R.J., Eckert, E.R.G., Ibele, W.E., Patankar, S.V., Simon, T.W., Kuehn, T.H., Strykowski, P.J., Tamma, K.K., Bar-Cohen, A., Heberlein, J.V.R., Davidson, J.H., Bishoff, J., Kulacki, F., Kortshagen, U., Garriet, S.: Heat transfer - a review of 2001 literature. Int. J. Heat. Mass. Tran. 11, 1887–1992 (2003)

    Article  Google Scholar 

  8. Hassanizadeh, M., Gray, W.G.: General Conservation Equations for Multi-phase System: 1. Averaging technique. Adv. Water Res. 2, 131–144 (1979)

    Article  Google Scholar 

  9. Hassanizadeh, M., Gray, W.G.: General Conservation Equations for Multi-Phase System: 2. Mass, Momenta, Energy and Entropy Equations. Adv. Water Res. 2, 191–201 (1979)

    Google Scholar 

  10. Hassanizadeh, M., Gray, W.G.: General Conservation Equations for Multi-Phase System: 3. Constitutive Theory for Porous Media Flow. Adv. Water Res. 3, 25–40 (1980)

    Google Scholar 

  11. Gray, W.G., Hassanizadeh, M.: Unsaturated Flow Theory including Interfacial Phenomena. Water Resources Res. 27(8), 1855–1863 (1991)

    Article  Google Scholar 

  12. Schrefler, B.A.: The Finite Element Method in Soil Consolidation (with applications to Surface Subsidence). PhD Thesis, University College of Swansea C/Ph/76/84, Swansea, UK (1984)

    Google Scholar 

  13. Lewis, R.W., Schrefler, B.A.: The Finite Element Method in the Deformation and Consolidation of Porous Media, 1st edn. John Wiley & Sons, Chichester (1987)

    Google Scholar 

  14. Schrefler, B.A., Simoni, L., Li, X., Zienkiewicz, O.C.: Mechanics of partially saturated porous media. In: Desai, C.S., Gioda, G. (eds.) Numerical Methods and Constitutive Modelling in Geomechanics. CISM Courses and Lectures, vol. 311, pp. 169–209. Springer, Berlin (1990)

    Google Scholar 

  15. Gray, W.G., Schrefler, B.A.: Thermodynamic approach to effective stress in partially saturated porous media. Eur. J. Mech. A-Solid 20, 521–538 (2001)

    Article  MATH  Google Scholar 

  16. Borja, R.J.: Cam-clay plasticity. Part V: A mathematical framework for three-phase deformation and strain localisation analyses of partially saturated porous media. Comput. Meth. Appl. Mech. Eng. 193, 5301–5338 (2004)

    Article  MATH  Google Scholar 

  17. Simo, J.C.: Numerical Analysis and Simulation of Plasticity. In: Ciarlet, P.G., Lions, J.L. (eds.) Numerical Methods for Solids (Part 3), Handbook of Numerical Analysis, vol. 6. North-Holland, Amsterdam (1998)

    Google Scholar 

  18. Alonso, E.E., Gens, A., Josa, A.: A constitutive model for partially saturated soils. Géotechnique 40, 403–430 (1990)

    Article  Google Scholar 

  19. Bolzon, G., Schrefler, B.A., Zienkiewicz, O.C.: Elastoplastic soil constitutive laws generalized to partially saturated states. Géotechnique 46, 279–289 (1996)

    Article  Google Scholar 

  20. Zhang, H.W., Sanavia, L., Schrefler, B.A.: Numerical analysis of dynamic strain localisation in initially water saturated dense sand with a modified generalised plasticity model. Comput. Struct. 79, 441–459 (2001)

    Article  Google Scholar 

  21. Zienkiewicz, O.C., Chan, A., Pastor, M., Schrefler, B.A., Shiomi, T.: Computational Geomechanics with special Reference to Earthquake Engineering. John Wiley & Sons, Chichester (1999)

    MATH  Google Scholar 

  22. Simo, J.C., Hughes, T.J.R.: Computational Inelasticity. Springer, Berlin (1998)

    MATH  Google Scholar 

  23. Hofstetter, G., Taylor, R.L.: Treatment of the corner region for Drucker-Prager type plasticity. J. Appl. Math. Mech. Z. Angew. Math. Mech. 71, 589–591 (1991)

    Google Scholar 

  24. Sanavia, L., Schrefler, B.A., Steinmann, P.: A formulation for an unsaturated porous medium undergoing large inelastic strains. Comput. Mech. 28, 137–151 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sanavia, L., Schrefler, B.A. (2012). Finite Element Analysis of the Initiation of Landslides with a Non-isothermal Multiphase Model. In: Frémond, M., Maceri, F. (eds) Mechanics, Models and Methods in Civil Engineering. Lecture Notes in Applied and Computational Mechanics, vol 61. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24638-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24638-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24637-1

  • Online ISBN: 978-3-642-24638-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics