Skip to main content

Engineering Nanostructured Silver Coatings for Antimicrobial Applications

  • Chapter
  • First Online:
Nano-Antimicrobials

Abstract

Surface engineering based on the application of silver nanoparticles is emerging as one of the most promising in the nanotechnology field. The well-known antimicrobial activity of silver is emphasized by the high specific surface which grows inversely to the particle dimensions. In this chapter, various properties and applications of antibacterial silver coating are reviewed. In particular, an innovative deposition technology of silver nanoclusters on various natural and synthetic substrates developed by the authors is described. The deposition of strongly adhered silver nanostructures was obtained by a wet chemical method followed by a UV curing process. A very close view of the microstructure of the silver nanoclusters on the coated substrates has been obtained using advanced diagnostic tools: TEM, SEM, EDX. The strong antimicrobial capabilities of the treated substrates was evidenced with systematic antibacterial tests with Escherichia coli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Silva GA (2004) Introduction to nanotechnology and its applications to medicine. Surg Neurol 61:216–220. doi:10.1016/j.surneu.2003.09.036

    Article  Google Scholar 

  2. Roco MC (2003) Nanotechnology: convergence with modern biology and medicine. Curr Opin Biotechnol 14:337–346. doi:10.1016/S0958-1669(03)00068-5

    Article  Google Scholar 

  3. Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian S (2007) Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomed Nanotechnol Biol Med 3:168–171. doi:10.1016/j.nano.2007.02.001

    Article  Google Scholar 

  4. Guzmán MG, Dille J, Godet S (2008) Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity. World Acad Sci Eng Technol 43:357–364. http://www.omnis-mg.hr/Radovi/4bak-4siz-peru.pdf

    Google Scholar 

  5. Lara HH, Ayala-Nunez NV, Ixtepan Turrent LC, Rodrıguez Padilla C (2010) Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J Microbiol Biotechnol 26:615–621. doi: 10.1007/s11274-009-0211-3

    Article  Google Scholar 

  6. Panacek A, Kolar M, Vecerova R, Prucek R, Soukupova J, Krystof V, Hamal P, Zboril R, Kvıtek L (2009) Antifungal activity of silver nanoparticles against Candida spp. Biomaterials 30:6333–6340. doi:10.1016/j.biomaterials.2009.07.065

    Article  Google Scholar 

  7. Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman MJ (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol. doi: 10.1186/1477-3155-3-6

  8. Lu L, Sun RW, Chen R, Hui CK, Ho CM, Luk JM, Lau GK, Che CM (2008) Silver nanoparticles inhibit hepatitis B virus replication. Antivir Ther 13:253–262 http://www.intmedpress.com/journals/avt/abstract.cfm?id=130&pid=88

    Google Scholar 

  9. Lara HH, Ayala-Nunez NV, Ixtepan-Turrent L, Rodriguez-Padilla C (2010) Mode of antiviral action of silver nanoparticles against HIV-1. J Nanobiotechnol. doi:10.1186/1477-3155-8-1

  10. Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D (2007) Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnol 18: 225103. doi:10.1088/0957-4484/18/22/225103

    Article  Google Scholar 

  11. Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: Green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145:83–96. doi:10.1016/j.cis.2008.09.002

    Article  Google Scholar 

  12. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH (2007) Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol Biol Med 3:95–101. doi:10.1016/j.nano.2006.12.001

    Article  Google Scholar 

  13. Dickinson GM, Bisno AL (1989) Infections associated with indwelling devices: concepts of pathogenesis; Infections associated with intravascular devices. Antimicrob Agents Chemother 33:597–601. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC172497/

  14. Sitges-Serra A, Girvent M (1999) Catheter-related Bloodstream Infections. World J Surg 23:589–595. doi: 10.1007/PL00012352

    Article  Google Scholar 

  15. Donlan RM (2001) Biofilms and device-associated infections. Emerg Infect Dis 7:277–281. http://www.cdc.gov/ncidod/eid/vol7no2/donlan.htm. Accessed 5 March 2009

    Article  Google Scholar 

  16. Francolini I, Donelli G, Stoodley P (2003) Polymer designs to control biofilm growth on medical devices. Rev Environ Sci Biotechnol 2:307–319. doi: 10.1023/B:RESB.0000040469.26208.83

    Article  Google Scholar 

  17. Tenke P, Riedl CR, Jones GL, Williams GJ, Stickler D, Nagy E (2004) Bacterial biofilm formation on urologic devices and heparin coating as preventive strategy. Int J Antimicrob Agents 23:67–74. doi:10.1016/j.ijantimicag.2003.12.007

    Article  Google Scholar 

  18. Elliot TS (1999) Role of antimicrobial central catheters for prevention of associated infections. J Antimicrob Chemother 43:441–446. doi:10.1093/jac/43.4.441

    Article  Google Scholar 

  19. Mojibian H, Spector M, Ni N, Eliseo D, Pollak J, Tal M (2009) Initial clinical experience with a new heparin coated chronic hemodialysis catheter. Hemodial Int 13:329–334. doi:10.1111/j.1542-4758.2009.00339.x

    Article  Google Scholar 

  20. Riedl CR, Witkowski M, Plas E, Pflueger H (2002) Heparin coating reduces encrustation of ureteral stents: a preliminary report. Int J Antimicrob Agents 19:507–510. doi:10.1016/S0924-8579(02)00097-3

    Article  Google Scholar 

  21. Sherertz RJ, Carruth WA, Hampton AA, Byron MP, Solomon DD (1993) Efficacy of antibiotic-coated catheters in preventing subcutaneous Staphylococcus aureus Infection in Rabbits. J Infect Dis 167:98–106. doi:10.1093/infdis/167.1.98

    Article  Google Scholar 

  22. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Tapia Ramırez J, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnol 16:2346–2353. doi:10.1088/0957-4484/16/10/059

    Article  Google Scholar 

  23. Raffi M, Hussain F, Bhatti TM, Akhter JI, Hameed A, Hasan MM (2008) Antibacterial characterization of silver nanoparticles against E. coli ATCC-15224. J Mater Sci Technol 24:192–196. http://www.jmst.org/EN/abstract/abstract8045.shtml. Accessed 10 October 2009

    Google Scholar 

  24. Chaloupka K, Malam Y, Seifalian AM (2010) Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol 28:580–588. doi:10.1016/j.tibtech.2010.07.006

    Article  Google Scholar 

  25. Dunn K, Edwards-Jones V, (2004) The role of ActicoatTM with nanocrystalline silver in the management of burns. Burns 30:S1–S9 doi:10.1016/S0305-4179(04)90000-9

    Article  Google Scholar 

  26. Maneerung T, Tokura S, Rujiravanit R (2008) Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym 72:43–51. doi:10.1016/j.carbpol.2007.07.025

    Article  Google Scholar 

  27. Gupta P, Bajpai M, Bajpai SK (2008) Investigation of antibacterial properties of silver nanoparticle-loaded poly(acrylamide-co-itaconic acid)-grafted cotton fabric. J Cotton Sci 12:280–286. http://www.cotton.org/journal/2008-12/3/

    Google Scholar 

  28. Lia Y, Leung P, Yao L, Song QW, Newton E (2006) Antimicrobial effect of surgical masks coated with nanoparticles. J Hosp Infect 62:58–63. doi:10.1016/j.jhin.2005.04.015

    Article  Google Scholar 

  29. Wollina U, Heide M, Müller-Litzb W, Obenauf D, Ash J (2003) functional textiles in prevention of chronic wounds, wound healing and tissue engineering. Text skin. Curr Probl Dermatol 31:82–97. doi: 10.1159/000072239

    Article  Google Scholar 

  30. Kim KJ, Sung WS, Moon SK, Choi JS, Kim JG, Lee DG (2008) Antifungal effect of silver nanoparticles on dermatophytes. J Microbiol Biotechnol 18:1482–1484. http://www.nanoarchive.org/13/. Accessed 10 October 2008

    Google Scholar 

  31. Ravindra S, Murali Mohan Y, Narayana Reddy N, Mohana Raju K (2010) Fabrication of antibacterial cotton fibres loaded with silver nanoparticles via “Green Approach”. Colloids Surf A: Physicochem. Eng Aspects 367:31–40. doi:10.1016/j.colsurfa.2010.06.013

    Article  Google Scholar 

  32. Pollini M, Russo M, Licciulli A, Sannino A, Maffezzoli A (2009) Characterization of antibacterial silver coated yarns. J Mater Sci Mater in Med 20:2361–2366. doi:10.1007/s10856-009-3796-z

    Article  Google Scholar 

  33. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668. doi: 10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2–3

    Article  Google Scholar 

  34. Borsuk D, Gallant M, Richard D, Williams H (2007) Silver-coated nylon dressings for pediatric burn victims. Can J Plast Surg 15:29–31. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2686041/

    Google Scholar 

  35. Chen X, Schluesener HJ (2008) Nanosilver: A nanoproduct in medical application. Toxicol Lett 176:1–12. doi:10.1016/j.toxlet.2007.10.004

    Article  Google Scholar 

  36. Jo YK, Kim BH, Jung G (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93:1037–1043. doi:10.1094/PDIS-93-10-1037

    Article  Google Scholar 

  37. Chopra I (2007) The increasing use of silver-based products as antimicrobial agents: A useful development or a cause for concern? J Antimicrob Chemother 59:587–590. doi:10.1093/jac/dkm006

    Article  Google Scholar 

  38. Kim J, Kwon S, Ostler E (2009) Antimicrobial effect of silver-impregnated cellulose: Potential for antimicrobial therapy. J Biol Eng. doi:10.1186/1754-1611-3-20

  39. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83. doi:10.1016/j.biotechadv.2008.09.002

    Article  Google Scholar 

  40. Jain P, Pradeep T (2005) Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnol Bioeng 90:59–63. doi: 10.1002/bit.20368

    Article  Google Scholar 

  41. Krutyakov YA, Kudrinskiy AA, Olenin AY, Lisichkin GV (2008) Synthesis and properties of silver nanoparticles: Advances and prospects. Russ Chem Rev 77:233–257. doi: 10.1070/RC2008v077n03ABEH003751

    Article  Google Scholar 

  42. Pal S, Tak YK, Myong Song J (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli . Appl Environ Microbiol 73:1712–1720. doi:10.1128/AEM.02218-06

    Article  Google Scholar 

  43. Baer DR, Burrows PE, El-Azab AA (2003) Enhancing coating functionality using nanoscience and nanotechnology. Prog Org Coat 47:342–356. doi:10.1016/S0300-9440(03)00127-9

    Article  Google Scholar 

  44. Chu PK, Chen JY, Wang LP, Huang N (2002) Plasma-surface modification of biomaterials. Mater Sci Eng 36:143–206. doi:10.1016/S0927-796X(02)00004-9

    Article  Google Scholar 

  45. Sardella E, Favia P, Gristina R, Nardulli M, D’Agostino R (2006) Plasma-aided micro- and nanopatterning processes for biomedical applications. Plasma Process Polym 3:456–469. doi: 10.1002/ppap.200600041

    Article  Google Scholar 

  46. Gomathi N, Sureshkumar A, Neogi S (2008) RF plasma-treated polymers for biomedical applications. Curr Sci 94:1478–1486. http://www.ias.ac.in/currsci/jun102008/contents.htm. Accessed 10 June 2008

    Google Scholar 

  47. Korner E, Aguirre MH, Fortunato G, Ritter A, Ruhe J, Hegemann D (2010) Formation and distribution of silver nanoparticles in a functional plasma polymer matrix and related Ag+ release properties. Plasma Process Polym 7:619–625. doi: 10.1002/ppap.200900163

    Article  Google Scholar 

  48. Hegemann D, Hossain MM, Balazs DJ (2007) Nanostructured plasma coatings to obtain multifunctional textile surfaces. Prog Org Coat 58:237–240. doi:10.1016/j.porgcoat.2006.08.027

    Article  Google Scholar 

  49. Dowling DP, Donnelly K, McConnell ML, Eloy R, Arnaud MN (2001) Deposition of anti-bacterial silver coatings on polymeric substrates. Thin Solid Films 398:602–606. doi:10.1016/S0040-6090(01)01326-8

    Article  Google Scholar 

  50. Mejía MI, Restrepo G, Marín JM, Sanjines R, Pulgarín C, Mielczarski E, Mielczarski J, Kiwi J. (2010) Magnetron-sputtered Ag surfaces. New evidence for the nature of the Ag ions intervening in bacterial inactivation. ACS Appl Mater Interf 2:230–235. doi: 10.1021/am900662q

    Article  Google Scholar 

  51. Wang HB, Wei QF, Wang JY, Hong JH, Zhao XY (2008) Sputter deposition of nanostructured antibacterial silver on polypropylene non-wovens. Surf Eng 24:70–74. doi: 10.1179/174329408X277493

    Article  Google Scholar 

  52. Wang HB, Wang JY, Wei QF, Hong JH, Zhao X (2007) Nanostructured antibacterial silver deposited on polypropylene nonwovens. Surf Rev Lett 14:553–557. doi: 10.1142/S0218625X07009839

    Article  Google Scholar 

  53. Gupta R, Kumar A (2008) Bioactive materials for biomedical applications using sol–gel technology. Biomed Mater 3(2008):034005. doi:10.1088/1748-6041/3/3/034005

    Article  Google Scholar 

  54. Mahltig B, Textor T (2010) Silver containing sol–gel coatings on polyamide fabrics as antimicrobial finish-description of a technical application process for wash permanent antimicrobial effect. Fibers Polym 11:1152–1158. doi: 10.1007/s12221-010-1152-z

    Article  Google Scholar 

  55. Shameli K, Ahmad M, Zargar M, Yunus W, Ibrahim N (2011) Fabrication of silver nanoparticles doped in the zeolite framework and antibacterial activity. Int J Nanomed 6:331–334. doi: 10.2147/IJN.S16964

    Article  Google Scholar 

  56. Hadad L, Perkas N, Gofer Y, Calderon-Moreno J, Ghule A, Gedanken A. (2007) Sonochemical deposition of silver nanoparticles on wool fibers. J Appl Polym Sci 104:1732–1737. doi:10.1002/app.25813

    Article  Google Scholar 

  57. Perelshtein I, Applerot G, Perkas N, Guibert G, Mikhailov S, Gedanken A (2008) Sonochemical coating of silver nanoparticles on textile fabrics (nylon, polyester and cotton) and their antibacterial activity. Nanotechnology 19:245705. doi:10.1088/0957-4484/19/24/245705

    Article  Google Scholar 

  58. Song KC, Lee SM, Park TS, Lee BS. (2009) Preparation of colloidal silver nanoparticles by chemical reduction method. Korean J Chem Eng 26:153–155. doi: 10.1007/s11814-009-0024-y

    Article  Google Scholar 

  59. Nair LS, Laurencin CT (2007) Silver nanoparticles: synthesis and therapeutic applications. J Biomed Nanotechnol 3:301–316. doi: 10.1166/jbn.2007.041

    Article  Google Scholar 

  60. Yin H, Yamamotob T, Wada Y, Yanagida S (2004) Large-scale and size-controlled synthesis of silver nanoparticles under microwave irradiation. Mater Chem Phys 83:66–70. doi:10.1016/j.matchemphys.2003.09.006

    Article  Google Scholar 

  61. Starowic M, Stypuła B, Banas J (2006) Electrochemical synthesis of silver nanoparticles. Electrochem Commun 8:227–230. doi:10.1016/j.elecom.2005.11.018

    Article  Google Scholar 

  62. Coronato Courrol L, Rodrigues de Oliveira Silva F, Gomes L (2007) A simple method to synthesize silver nanoparticles by photo-reduction. Colloids Surf A: Physicochem Eng Asp 305:54–57. doi:10.1016/j.colsurfa.2007.04.052

    Article  Google Scholar 

  63. Pollini M, Sannino A, Maffezzoli A, Licciulli A (2008) Antibacterial surface treatments based on Silver clusters deposition. EP20050850988 (2008-11-05)

    Google Scholar 

  64. Haug S, Roll A, Schmid-Grendelmeier P, Johansena P, Wüthricha B, Kündiga TM, Senti G (2006) Coated textiles in the treatment of atopic dermatitis. Curr Probl Dermatol 33:144–151. doi: 10.1159/000093941

    Article  Google Scholar 

  65. Chen CY, Chiang CL (2008) Preparation of cotton fibers with antibacterial silver nanoparticles. Mater Lett 62:3607–3609. doi:10.1016/j.matlet.2008.04.008

    Article  Google Scholar 

  66. Biederman T (2006) Dissecting the role of infections in atopic dermatitis. Acta Derm Venereol 86:99–109. doi: 10.2340/00015555-0047

    Google Scholar 

  67. Huang JT, Abrams M, Tlougan B, Rademaker A, Paller AS, (2009) Treatment of Staphylococcus aureus colonization in atopic dermatitis decreases disease severity. Pediatrics 123:808–814. doi: 10.1542/peds.2008-2217

    Article  Google Scholar 

  68. Ricci G, Patrizi A, Mandrioli P, Specchia F, Medri M, Menna G, Masi M (2006) Evaluation of the antibacterial activity of a special silk textile in the treatment of atopic dermatitis. Dermatology 213:224–227. doi: 10.1159/000095040

    Article  Google Scholar 

  69. Daeschlein G, Assadian O, Arnold, Haase H, Kramer A, Jünger M (2010) Bacterial burden of worn therapeutic silver textiles for neurodermitis patients and evaluation of efficacy of washing. Skin Pharmacol Physiol 23:86–90. doi: 10.1159/000265679

    Article  Google Scholar 

  70. Gauger A, Fischer S, Mempel M, Schaefer T, Foelster-Holst R, Abeck D, Ring J (2006) Efficacy and functionality of silver-coated textiles in patients with atopic eczema. Eur Acad Dermatol Venereol 20:534–41. doi: 10.1111/j.1468-3083.2006.01526.x

    Article  Google Scholar 

  71. Gao Y, Cranston R (2008) Recent advances in antimicrobial treatments of textiles. Text Res J 78:60–72. doi: 10.1177/0040517507082332

    Article  Google Scholar 

  72. Kostic M, Radic N, Obradovic BM, Dimitrijevic S, Kuraica MM, Skundric P (2009) Silver-loaded cotton/polyester fabric modified by dielectric barrier discharge treatment. Plasma Process Polym 6:58–67. doi: 10.1002/ppap.200800087

    Article  Google Scholar 

  73. MacKeen PC, Person S, Warner SC, Snipes W, Stevens SE Jr (1987) Silver-coated nylon fiber as an antibacterial agent. Antimicrob Agents Chemother 31:93–99. http://aac.asm.org/cgi/reprint/31/1/93.pdf

    Google Scholar 

  74. Deitch EA, Marino AA, Gillespie TE, Albright JA (1983) Silver-nylon: a new antimicrobial agent. Antimicrob Agents Chemother 23:356–359. http://aac.asm.org/cgi/reprint/23/3/356

    Google Scholar 

  75. Canaud B (1999) Haemodialysis catheter-related infection: time for action. Nephrol Dial Transplant 14:2288–2290. doi: 10.1093/ndt/14.10.2288

    Article  Google Scholar 

  76. Reid G. (1999) Biofilms in infectious disease and on medical devices. Int J Antimicrob Agents 11:223–226. doi:10.1016/S0924-8579(99)00020-5

    Article  Google Scholar 

  77. Tobin EJ, Bambauer R (2003) Silver coating of dialysis catheters to reduce bacterial colonization and infection. Ther Apher Dial 7:504–509. doi:10.1046/j.1526-0968.2003.00097.x

    Article  Google Scholar 

  78. Pavithra D, Doble M (2008) Biofilm formation, bacterial adhesion and host response on polymeric implants—issues and prevention. Biomed Mater. doi: 10.1088/1748-6041/3/3/034003

  79. Guggenbichler JP, Boswald M, Lugauer S, Krall T (1999) A new technology of microdispersed silver in polyurethane induces antimicrobial activity in central venous catheters. Infection 27:16–23. doi:10.1007/BF02561612

    Article  Google Scholar 

  80. Guggenbichler J-P (2003) Central venous catheter associated infections pathophysiology, incidence, clinical diagnosis, and prevention–A review. Mat-wiss Werkstofftech 34(12):1145. doi: 10.1002/mawe.200300712

    Article  Google Scholar 

  81. Serghini-Monim S, Norton PR, Puddephatt RJ (1997) Chemical vapor deposition of silver on plasma-modified polyurethane surfaces. J Phys Chem B 101:7808–7813. doi: 10.1021/jp9713827

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pollini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Pollini, M., Paladini, F., Licciulli, A., Maffezzoli, A., Sannino, A. (2012). Engineering Nanostructured Silver Coatings for Antimicrobial Applications. In: Cioffi, N., Rai, M. (eds) Nano-Antimicrobials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24428-5_11

Download citation

Publish with us

Policies and ethics