Skip to main content

Multi-Kernel Classification for Integration of Clinical and Imaging Data: Application to Prediction of Cognitive Decline in Older Adults

  • Conference paper
Machine Learning in Medical Imaging (MLMI 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7009))

Included in the following conference series:

Abstract

Diagnosis of neurologic and neuropsychiatric disorders typically involves considerable assessment including clinical observation, neuroimaging, and biological and neuropsychological measurements. While it is reasonable to expect that the integration of neuroimaging data and complementary non-imaging measures is likely to improve early diagnosis on individual basis, due to technical challenges associated with the task of combining different data types, medical image pattern recognition analysis has been largely focusing solely on neuroimaging evaluations. In this paper, we explore the potential of integrating neuroimaging and clinical information within a pattern classification framework, and propose that the multi-kernel learning (MKL) paradigm may be suitable for building a multimodal classifier of a disorder, as well as for automatic identification of the relevance of each information type. We apply our approach to the problem of detecting cognitive decline in healthy older adults from single-visit evaluations, and show that the performance of a classifier can be improved when nouroimaging and clinical evaluations are used simultaneously within a MKL-based classification framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benton, A.: Revised Visual Retention Test. The Psych. Corp., New York (1974)

    Google Scholar 

  2. Bouwman, F.H., van der Flier, W.M., Schoonenboom, N.S.M., van Elk, E.J., Kok, A., Rijmen, F., Blankenstein, M.A., Scheltens, P.: Longitudinal changes of CSF biomarkers in memory clinic patients. Neurology 69(10), 1006–1011 (2007)

    Article  Google Scholar 

  3. Davatzikos, C., Genc, A., Xu, D., Resnick, S.M.: Voxel-based morphometry using the ravens maps: methods and validation using simulated longitudinal atrophy. Neuroimage 14(6), 1361–1369 (2001)

    Article  Google Scholar 

  4. Davatzikos, C., Bhatt, P., Shaw, L.M., Batmanghelich, K.N., Trojanowski, J.Q.: Prediction of mci to ad conversion, via mri, csf biomarkers, and pattern classification. Neurobiology of Aging (2010) (in press, corrected proof )

    Google Scholar 

  5. Delis, D., Kramer, J., Kaplan, E., Ober, B.: California Verbal Learning Test - Research Edition. The Psychological Corporation, New York (1987)

    Google Scholar 

  6. Duchesne, S., Bocti, C., De Sousa, K., Frisoni, G.B., Chertkow, H., Collins, D.L.: Amnestic mci future clinical status prediction using baseline mri features. Neurobiol Aging 31(9), 1606–1617 (2010)

    Article  Google Scholar 

  7. Fan, Y., Batmanghelich, N., Clark, C.M., Davatzikos, C.: Spatial patterns of brain atrophy in mci patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline. NeuroImage 39(4), 1731–1743 (2008)

    Article  Google Scholar 

  8. Folstein, M.F., Folstein, S.E., McHugh, P.R.: ”mini-mental state”. a practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12(3), 189–198 (1975)

    Article  Google Scholar 

  9. Hinrichs, C., Singh, V., Xu, G., Johnson, S.C.: Predictive markers for ad in a multi-modality framework: An analysis of mci progression in the adni population. NeuroImage 55(2), 574–589 (2011)

    Article  Google Scholar 

  10. Ji, Y., Permanne, B., Sigurdsson, E.M., Holtzman, D.M., Wisniewski, T.: Amyloid beta40/42 clearance across the blood-brain barrier following intra-ventricular injections in wild-type, apoe knock-out and human apoe3 or e4 expressing transgenic mice. J. Alzheimers Dis. 3(1), 23–30 (2001)

    Article  Google Scholar 

  11. Kloppel, S., Stonnington, C.M., Chu, C., Draganski, B., Scahill, R.I., Rohrer, J.D., Fox, N.C., Jack, C.R., Ashburner, J., Frackowiak, R.S.J.: Automatic classification of mr scans in alzheimer’s disease. Brain 131(3), 681–689 (2008)

    Article  Google Scholar 

  12. de Leon, M., Mosconi, L., Li, J., De Santi, S., Yao, Y., Tsui, W., Pirraglia, E., Rich, K., Javier, E., Brys, M., Glodzik, L., Switalski, R., Saint Louis, L., Pratico, D.: Longitudinal csf isoprostane and mri atrophy in the progression to ad. Journal of Neurology 254, 1666–1675 (2007)

    Article  Google Scholar 

  13. Petersen, R., Jack Jr., C.: Imaging and biomarkers in early alzheimer’s disease and mild cognitive impairment. Clin. Pharmacol. Ther. 84(4), 438–441 (2009)

    Article  Google Scholar 

  14. Pham, D.L., Prince, J.L.: Adaptive fuzzy segmentation of magnetic resonance images. IEEE Trans. Med. Imaging 18(9), 737–752 (1999)

    Article  Google Scholar 

  15. Resnick, S.M., Pham, D.L., Kraut, M.A., Zonderman, A.B., Davatzikos, C.: Longitudinal magnetic resonance imaging studies of older adults: A shrinking brain. J. Neurosci. 23(8), 3295–3301 (2003)

    Google Scholar 

  16. Shen, D., Davatzikos, C.: Hammer: Hierarchical attribute matching mechanism for elastic registration. IEEE Trans. Med. Imag. 21(11), 1421–1439 (2002)

    Article  Google Scholar 

  17. Sonnenburg, S., Rätsch, G., Henschel, S., Widmer, C., Behr, J., Zien, A., de Bona, F., Binder, A., Gehl, C., Franc, V.: The shogun machine learning toolbox. J. Mach. Learn. Res. 99, 1799–1802 (2010)

    MATH  Google Scholar 

  18. Sonnenburg, S., Rätsch, G., Schäfer, C., Schölkopf, B.: Large scale multiple kernel learning. J. Mach. Learn. Res. 7, 1531–1565 (2006)

    MathSciNet  MATH  Google Scholar 

  19. Vapnik, V.N.: The nature of statistical learning theory. Springer-Verlag New York, Inc., New York (1995)

    Book  MATH  Google Scholar 

  20. Zhang, D., Wang, Y., Zhou, L., Yuan, H., Shen, D.: Multimodal classification of alzheimer’s disease and mild cognitive impairment. NeuroImage 55(3), 856–867 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Filipovych, R., Resnick, S.M., Davatzikos, C. (2011). Multi-Kernel Classification for Integration of Clinical and Imaging Data: Application to Prediction of Cognitive Decline in Older Adults. In: Suzuki, K., Wang, F., Shen, D., Yan, P. (eds) Machine Learning in Medical Imaging. MLMI 2011. Lecture Notes in Computer Science, vol 7009. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24319-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24319-6_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24318-9

  • Online ISBN: 978-3-642-24319-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics