Skip to main content

Adaptive Discrete Laplace Operator

  • Conference paper
Advances in Visual Computing (ISVC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6939))

Included in the following conference series:

Abstract

Diffusion processes capture information about the geometry of an object such as its curvature, symmetries and particular points. The evolution of the diffusion is governed by the Laplace-Beltrami operator which presides to the diffusion on the manifold. In this paper, we define a new discrete adaptive Laplacian for digital objects, generalizing the operator defined on meshes. We study its eigenvalues and eigenvectors recovering interesting geometrical informations. We discuss its convergence towards the usual Laplacian operator especially on lattice of diamonds. We extend this definition to 3D shapes. Finally we use this Laplacian in classical but adaptive denoising of pictures preserving zones of interest like thin structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bronstein, M.M., Bronstein, A.M.: Shape recognition with spectral distances. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 1065–1071 (2011)

    Article  Google Scholar 

  2. Buades, A., Coll, B., Morel, J.-M.: Image denoising methods. a new nonlocal principle. SIAM Review 52(1), 113–147 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Buades, A., Coll, B., Morel, J.-M.: Self-similarity-based image denoising. Commun. ACM 54(5), 109–117 (2011)

    Article  Google Scholar 

  4. Fiorio, C., Mercat, C., Rieux, F.: Curvature estimation for discrete curves based on auto-adaptive masks of convolution. In: Barneva, R.P., Brimkov, V.E., Hauptman, H.A., Natal Jorge, R.M., Tavares, J.M.R.S. (eds.) CompIMAGE 2010. LNCS, vol. 6026, pp. 47–59. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  5. Gebal, K., Bærentzen, J.A., Aanæs, H., Larsen, R.: Shape Analysis Using the Auto Diffusion Function. In: Konrad et al. (ed.) [6], pp. 1405–1413

    Google Scholar 

  6. Konrad, P., Marc, A., Michael, K. (eds.): Symposium on Graphics Processing. Eurographics Association (2009)

    Google Scholar 

  7. Lévy, B.: Laplace-beltrami eigenfunctions towards an algorithm that ”understands” geometry. In: SMI, page 13. IEEE Computer Society, Los Alamitos (2006)

    Google Scholar 

  8. Lindenbaum, M., Fischer, M., Bruckstein, A.M.: On gabor’s contribution to image enhancement. Pattern Recognition 27(1), 1–8 (1994)

    Article  Google Scholar 

  9. Mateus, D., Horaud, R., Knossow, D., Cuzzolin, F., Boyer, E.: Articulated shape matching using laplacian eigenfunctions and unsupervised point registration. In: CVPR. IEEE Computer Society, Los Alamitos (2008)

    Google Scholar 

  10. Mercat, C.: Discrete Riemann surfaces and the Ising model. Comm. Math. Phys. 218(1), 177–216 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Nadirashvili, N., Tot, D., Yakobson, D.: Geometric properties of eigenfunctions. Uspekhi Mat. Nauk 56(6(342), 67–88 (2001)

    Google Scholar 

  12. Ovsjanikov, M., Mérigot, Q., Mémoli, F., Guibas, L.: One point isometric matching with the heat kernel. In: Eurographics Symposium on Geometry Processing (SGP), vol. 29 (2010)

    Google Scholar 

  13. Ovsjanikov, M., Mérigot, Q., Mémoli, F., Guibas, L.J.: One point isometric matching with the heat kernel. Comput. Graph. Forum 29(5), 1555–1564 (2010)

    Article  Google Scholar 

  14. Rustamov, R.M.: Laplace-beltrami eigenfunctions for deformation invariant shape representation. In: Belyaev, A.G., Garland, M. (eds.) Symposium on Geometry Processing. ACM International Conference Proceeding Series, vol. 257, pp. 225–233. Eurographics Association (2007)

    Google Scholar 

  15. Sun, J., Ovsjanikov, M., Guibas, L.: A Concise and Provably Informative Multi-Scale Signature Based on Heat Diffusion. In: Konrad, et.al. (ed.) [6], pp. 1383–1392

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fiorio, C., Mercat, C., Rieux, F. (2011). Adaptive Discrete Laplace Operator. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2011. Lecture Notes in Computer Science, vol 6939. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24031-7_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24031-7_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24030-0

  • Online ISBN: 978-3-642-24031-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics