Skip to main content

Agent-Based Modeling

  • Chapter
  • First Online:
Social Self-Organization

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

Since the advent of computers, the natural and engineering sciences have enormously progressed. Computer simulations allow one to understand interactions of physical particles and make sense of astronomical observations, to describe many chemical properties ab initio, and to design energy-efficient aircrafts and safer cars. Today, the use of computational devices is pervasive. Offices, administrations, financial trading, economic exchange, the control of infrastructure networks, and a large share of our communication would not be conceivable without the use of computers anymore. Hence, it would be very surprising, if computers could not make a contribution to a better understanding of social and economic systems.

This chapter has been prepared by D. Helbing and S. Balietti under the project title “How to Do Agent-Based Simulations in the Future: From Modeling Social Mechanisms to Emergent Phenomena and Interactive Systems Design”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    There exist a number of software packages aimed at supporting developers in versioning the code. They automatise several operations such as assigning sequential versions numbers, comparing different versions of files, undo or merging changes on the same files, etc. For examples, see [132135].

  2. 2.

    The reason for this is that deterministic systems may easily get trapped in local optima, which can be overcome by noise [119].

  3. 3.

    Some random number generators do this automatically by coupling to the clock.

  4. 4.

    One should be aware that this may sooner or later happen to any model, if it promises to be useful to address real-world phenomena.

  5. 5.

    Probably, nobody would claim that they are always true.

  6. 6.

    Another example is the “self-control” of urban traffic flows, which is based on a special, traffic-reponsive kind of decentralized traffic light control [40], see Sect. 2.4.2.1.

References

  1. D. Helbing, S. Balietti, From social data mining to forecasting socio-economic crisis. visioneer white paper (2010) http://www.visioneer.ethz.ch.

  2. N. Gilbert, K.G. Troitzsch, Simulation for the Social Scientist. (Open University Press, England, 2005)

    Google Scholar 

  3. J.M. Epstein, R. Axtell, Growing artificial societies. (Cambridge, MA, 1996)

    Google Scholar 

  4. J.M. Epstein, Generative Social Science: Studies in Agent-Based Computational Modeling. Princeton Studies in Complexity. (Princeton University Press, Princeton, 2007)

    Google Scholar 

  5. N.R. Jennings, On agent-based software engineering. Artif. Intell. 117(2), 277–296 (2000)

    Google Scholar 

  6. A.M. Uhrmacher, D. Weyns, Multi-Agent Systems: Simulation and Applications. (CRC Press, Inc., Boca Raton, FL, USA, 2009)

    Google Scholar 

  7. N. Gilbert, S. Bankes, Platforms and methods for agent-based modeling. Proc. Natl. Acad. Sci. USA 99(Suppl 3), 7197 (2002)

    Google Scholar 

  8. M.W. Macy, R. Willer, From factors to actors: computational sociology and agent-based modeling. Annu. Rev. Sociol. 28(1), 143–166 (2002)

    Google Scholar 

  9. J.P. Davis, K.M. Eisenhardt, C.B. Bingham, Developing theory through simulation methods. Acad. Manag. Rev. 32(2), 480 (2007)

    Google Scholar 

  10. R.A. Bentley, P. Ormerod, Agents, intelligence, and social atoms, in Creating Consilience: Integrating the Sciences and the Humanities, ed. by M. Collard, E. Slingerland (Oxford University Press, 2011)

    Google Scholar 

  11. D. Helbing, Pluralistic modeling of complex systems (2010) CCSS-10-009

    Google Scholar 

  12. J.M. Epstein, Why model? J. Artif. Soc. Soc. Simulat. 11(4), 12 (2008). http://jasss.soc.surrey.ac.uk/11/4/12.html

  13. D. Helbing, S. Balietti, Fundamental and real-world challenges in economics. Sci. Cult. 76, 399–417 (2010). Special Issue: 15 year of econophysics research

    Google Scholar 

  14. D. Helbing, A. Szolnoki, M. Perc, G. Szabó, Evolutionary establishment of moral and double moral standards through spatial interactions. PLoS Comput. Biol. 6(4), e1000758, 04 (2010)

    Google Scholar 

  15. R. May, A. McLean, Theoretical Ecology: Principles and Applications, 3rd edn. (Oxford University Press, USA, 2007)

    Google Scholar 

  16. I. Foster, A two-way street to science’s future. Nature 440, 419 (2006)

    Google Scholar 

  17. C.S. Taber, R.J. Timpone, Computational Modelign. (Sage, London, 1996)

    Google Scholar 

  18. F. Schweitzer, Brownian Agents and Active Particles. On the Emergence of Complex Behavior in the Natural and Social Sciences. (Springer, Berlin, 2003)

    Google Scholar 

  19. D. Helbing, J. Keltsch, P. Molnar, Modelling the evolution of human trail systems. Nature 388(6637), 47–50 (1997)

    Google Scholar 

  20. J.M. Epstein, Modelling to contain pandemics. Nature 460(7256), 687 (2009)

    Google Scholar 

  21. J. Parker, J. Epstein, A global-scale distributed agent-based model of disease transmission, ACM Transactions on Modelling and Computer Simulation (TOMACS) 22(1), (2011)

    Google Scholar 

  22. M. Treiber, A. Hennecke, D. Helbing, Congested traffic states in empirical observations and microscopic simulations. Phys. Rev. E 62, 1805 (2000)

    Google Scholar 

  23. D. Helbing, Derivation of non-local macroscopic traffic equations and consistent traffic pressures from microscopic car-following models. Eur. Phys. J. B 69(4), 539–548 (2009)

    Google Scholar 

  24. R.K. Sawyer, Artificial Societies. Socio. Meth. Res. 31(3), 325 (2003)

    Google Scholar 

  25. H.J. Aaron, Distinguished lecture on economics in government: Public policy, values, and consciousness. J. Econ. Perspect. 8(2), 3–21 (1994). http://ideas.repec.org/a/aea/jecper/v8y1994i2p3-21.html

  26. A.P. Kirman, Whom or what does the representative individual represent? J. Econ. Perspect. 6(2), 117–36 (1992). http://ideas.repec.org/a/aea/jecper/v6y1992i2p117-36.html

    Google Scholar 

  27. D. Helbing, M. Treiber, A. Kesting, M. Schönhof, Theoretical vs. empirical classification and prediction of congested traffic states. Eur. Phys. J. B 69(4), 583–598 (2009)

    Google Scholar 

  28. D. Helbing, Verkehrsdynamik. (Springer, Berlin, 1997)

    Google Scholar 

  29. D. Helbing, Managing Complexity: Insights, Concepts, Applications, 1st edn. (Springer, Berlin, 2007)

    Google Scholar 

  30. D. Helbing, Systemic risks in society and economics (2009). Sante Fe Institute, working paper 09-12-044.

    Google Scholar 

  31. R. Kuehne, Freeway control using a dynamic traffic flow model and vehicle reidentification techniques. Transport. Res. Record 1320, 251–259 (1991)

    Google Scholar 

  32. B.S. Kerner, P. Konhäuser, Cluster effect in initially homogeneous traffic flow. Phys. Rev. E 48(4), 2335+ (1993)

    Google Scholar 

  33. R.E. Chandler, R. Herman, E.W. Montroll, Traffic dynamics: studies in car following. Oper. Res., 165–184 (1958)

    Google Scholar 

  34. R. Herman, E.W. Montroll, R.B. Potts, R.W. Rothery, Traffic dynamics: analysis of stability in car following. Oper. Res. 7(1), 86–106 (1959)

    Google Scholar 

  35. D. Helbing, M. Treiber, Critical discussion of “synchronized flow”. Cooper. Transport. Dyn. 1, 2.1–2.24 (2002)

    Google Scholar 

  36. D. Helbing, T. Seidel, S. Laemmer, K. Peters, Econophysics and Sociophysics - Trends and Perspectives, chapter Self-organization principles in supply networks and production systems (Wiley, Weinheim, 2006), pp. 535–558

    Google Scholar 

  37. D. Helbing, A. Mazloumian, Operation regimes and slower-is-faster effect in the control of traffic intersections. Eur. Phys. J. B 70(2), 257–274 (2009)

    Google Scholar 

  38. Dirk Helbing, Illés J. Farkas, and Tamás Vicsek, Freezing by Heating in a Driven Mesoscopic System. Phys. Rev. Lett. 84(6), 1240–1243 (2000)

    Google Scholar 

  39. D. Helbing, W. Yu, The outbreak of cooperation among success-driven individuals under noisy conditions. Proc. Natl. Acad. Sci. 106(10), 3680–3685 (2009)

    Google Scholar 

  40. S. Laemmer, D. Helbing, Self-control of traffic lights and vehicle flows in urban road networks. JSTAT (2008). P04019

    Google Scholar 

  41. Michael Mäs, Andreas Flache, and Dirk Helbing, Individualization as Driving Force of Clustering Phenomena in Humans. PLoS Comput. Biol. 6(10), e1000959+ (2010)

    Google Scholar 

  42. J. Lorenz, H. Rauhut, F. Schweitzer, D. Helbing, How social influence undermines the wisdom of crowds. Proc. Natl. Acad. Sci. USA (PNAS) 108(22), 9020–9025 (2011)

    Google Scholar 

  43. D. Helbing, W. Yu, K.-D. Opp, H. Rauhut, The emergence of homogeneous norms in heterogeneous populations. Santa Fe Working Paper 11-01-001 (2011), see http://www.santafe.edu/media/workingpapers/11-01-001.pdf, last accessed on March 6, 2012

  44. C. Nardini, B. Kozma, A. Barrat, Who’s talking first? consensus or lack thereof in coevolving opinion formation models. Phys. Rev. Lett. 100(15), 158701 (2008)

    Google Scholar 

  45. J.S. Sichman, Depint: Dependence-based coalition formation in an open multi-agent scenario. JASSS J. Artif. Soc. Soc. Simulat. 1(2) (1998)

    Google Scholar 

  46. M.E. Gaston, M. des Jardins, Agent-organized networks for dynamic team formation. In Proceedings of the fourth international joint conference on Autonomous agents and multiagent systems, AAMAS ’05, pages 230–237, New York, NY, USA, 2005. ACM

    Google Scholar 

  47. E. Bonabeau, M. Dorigo, G. Theraulaz, Inspiration for optimization from social insect behaviour. Nature 406(6791), 39–42 (2000)

    Google Scholar 

  48. G. Szabo, G. Fath, Evolutionary games on graphs. Phys. Rep. 446(4-6), 97–216 (2007)

    Google Scholar 

  49. P.J. Carrington, J. Scott, S. Wasserman, Models and Methods in Social Network Analysis. (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  50. P. Holme, G. Ghoshal, Dynamics of networking agents competing for high centrality and low degree. Phys. Rev. Lett. 96(9), 098701 (2006)

    Google Scholar 

  51. M. Sierhuis, J.M. Bradshaw, A. Acquisti, R. van Hoof, R. Jeffers, A. Uszok, Human-Agent Teamwork and Adjustable Autonomy in Practice. In Proceedings of the seventh international symposium on artificial intelligence, robotics and automation in space (I-SAIRAS), 2003

    Google Scholar 

  52. Robert Axelrod, The Complexity of Cooperation: Agent-Based Models of Competition and Collaboration, 1st printing edn. (Princeton University Press, Princeton, 1997)

    Google Scholar 

  53. S. Bowles, H. Gintis, The evolution of strong reciprocity: cooperation in heterogeneous populations. Theor. Popul. Biol. 65(1), 17–28 (2004)

    Google Scholar 

  54. D. Helbing, A. Johansson, Cooperation, norms, and conflict: A unified approach (2009) SFI Working Paper

    Google Scholar 

  55. Heiko Rauhut and Marcel Junker, Punishment deters crime because humans are bounded in their strategic decision-making. J. Artif. Soc. Soc. Simulat. 12(3), 1 (2009)

    Google Scholar 

  56. L-E. Cederman, Modeling the size of wars: From billiard balls to sandpiles. Am. Polit. Sci. Rev. 97, 135–150 (2003)

    Google Scholar 

  57. L-E. Cederman, Emergent Actors in World Politics: How States and Nations Develop and Dissolve. (Princeton University Press, Princeton, NJ, 1997)

    Google Scholar 

  58. C. Hommes, Chapter 23 Heterogeneous Agent Models in Economics and Finance, in Handbook of Computational Economics, vol. 2 (Elsevier, 2006), pp. 1109–1186

    Google Scholar 

  59. B. LeBaron, Building the santa fe artificial stock market. Physica A, 2002. Working Paper, Brandeis University.

    Google Scholar 

  60. M. Raberto, S. Cincotti, S.M. Focardi, M. Marchesi, Agent-based simulation of a financial market. Phys. Stat. Mech. Appl. 299(1-2), 319–327 (2001)

    Google Scholar 

  61. J. Zhang, Growing Silicon Valley on a landscape: an agent-based approach to high-tech industrial clusters. Entrepreneurships, the New Economy and Public Policy, pp. 71–90 (2005)

    Google Scholar 

  62. Robert Axtell, The emergence of firms in a population of agents. Working Papers 99-03-019, Santa Fe Institute, March 1999

    Google Scholar 

  63. T. Kaihara, Multi-agent based supply chain modelling with dynamic environment. Int. J. Prod. Econ. 85(2), 263–269 (2003)

    Google Scholar 

  64. C. Preist, Commodity trading using an agent-based iterated double auction, in Proceedings of the third annual conference on Autonomous Agents (ACM 1999), pp. 131–138.

    Google Scholar 

  65. Lebaron, Blake, Tesfatsion, Leigh, Modeling macroeconomies as open-ended dynamic systems of interacting agents. Am. Econ. Rev. 98(2), 246–250 (2008)

    Google Scholar 

  66. Leigh Tesfatsion, Agent-based computational economics: growing economies from the bottom up. Artif. Life 8(1), 55–82 (2002)

    Google Scholar 

  67. J.R. Harrison, Z. Lin, G.R. Carroll, K.M. Carley, Simulation modeling in organizational and management research. Acad. Manag. Rev. 32(4), 1229 (2007)

    Google Scholar 

  68. B.S. Onggo, Parallel discrete-event simulation of population dynamics. In Proceedings of Winter Simulation Conference 2008 (Miami, FL, USA), pp. 1047–1054

    Google Scholar 

  69. Y. Mansury, M. Kimura, J. Lobo, T.S. Deisboeck, Emerging patterns in tumor systems: simulating the dynamics of multicellular clusters with an agent-based spatial agglomeration model. J. Theor. Biol. 219(3), 343–370 (2002)

    Google Scholar 

  70. D. Osullivan, J.M Macgill, C. Yu, Agent-based residential segregation: a hierarchically structured spatial model. Agent 2003 Challenges in Social Simulation (2003)

    Google Scholar 

  71. M. Batty, Cities and Complexity: Understanding Cities with Cellular Automata, Agent-Based Models, and Fractals. (The MIT Press, Cambridge, 2007)

    Google Scholar 

  72. D. Helbing, K. Nagel, The physics of traffic and regional development. Contemp. Phys. 45(5), 405–426 (2004)

    Google Scholar 

  73. V. Killer, K.W. Axhausen, D. Guth, C. Holz-Rau, Understanding regional effects of travel times in switzerland and germany 1970-2005. Jonkoping, Sweden, August 2010. 50th European Regional Science Association (ERSA)

    Google Scholar 

  74. C.R. Binder, C. Hofer, A. Wiek, R.W. Scholz, Transition towards improved regional wood flows by integrating material flux analysis and agent analysis: the case of appenzell ausserrhoden, switzerland. Ecol. Econ. 49(1), 1–17 (2004)

    Google Scholar 

  75. H. Dia, An agent-based approach to modelling driver route choice behaviour under the influence of real-time information. Transport. Res. C Emerg. Tech. 10(5-6), 331–349 (2002)

    Google Scholar 

  76. C.M. Henein, T. White, Agent-based modelling of forces in crowds, in Multi-agent and Multi-agent-Based Simulation (Springer, Berlin, 2005), pp. 173–184

    Google Scholar 

  77. M. Batty, Agent-based pedestrian modelling, in Advanced spatial analysis: the CASA book of GIS, page 81 (2003)

    Google Scholar 

  78. D. Delli Gatti, Emergent macroeconomics : an agent-based approach to business fluctuations. (Springer, Berlin, 2008)

    Google Scholar 

  79. M. Aoki, H. Yoshikawa, Reconstructing Macroeconomics: A Perspective from Statistical Physics and Combinatorial Stochastic Processes (Japan-US Center UFJ Bank Monographs on International Financial Markets), 1st edn. (Cambridge University Press, Cambridge, 2006)

    Google Scholar 

  80. R. Conte, R. Hegselmann, P. Terna, Simulating Social Phenomena. (Springer, Berlin, 1997)

    Google Scholar 

  81. R. Sun (ed.), Cognition and Multi-Agent Interaction: From Cognitive Modeling to Social Simulation, 1st edn. (Cambridge University Press, Cambridge, 2008)

    Google Scholar 

  82. N. Gilbert, Agent-Based Models. (Sage Publications, Inc, 2007)

    Google Scholar 

  83. V. Grimm, E. Revilla, U. Berger, F. Jeltsch, W.M. Mooij, S.F. Railsback, H.H. Thulke, J. Weiner, T. Wiegand, D.L. DeAngelis, Pattern-oriented modeling of agent-based complex systems: lessons from ecology. Science 310(5750), 987 (2005)

    Google Scholar 

  84. R. Axelrod, Advancing the art of simulation in the social sciences, in Handbook of Research on Nature Inspired Computing for Economy and Management, ed. by Jean-Philippe Rennard (Hersey, PA, 2005)

    Google Scholar 

  85. K. Nagel, Parallel implementation of the transims micro-simulation. Parallel Comput. 27(12), 1611–1639 (2001)

    Google Scholar 

  86. M. Rickert, K. Nagel, Dynamic traffic assignment on parallel computers in transims. Future Generat. Comput. Syst. 17(5), 637–648 (2001)

    Google Scholar 

  87. K. Nagel, R.J. Beckman, C.L. Barrett, Transims for urban planning. Los Alamos Unclassified Report (LA-UR) 98-4389, Los Alamos National Laboratory (1999)

    Google Scholar 

  88. K. Nagel, C.L. Barrett, Using microsimulation feedback for trip adaptation for realistic traffic in Dallas. Santa Fe Working Paper 97-03-028 (1997), see http://www.santafe.edu/media/workingpapers/97-03-028.pdf, last accessed on March 6, 2012

  89. P.M. Simon, J. Esser, and Nagel K. Simple queueing model applied to the city of portland. Int. J. Mod. Phys. C 10(5), 941–960 (1999)

    Google Scholar 

  90. B. Raney, N. Cetin, A. Vollmy, M. Vrtic, Axhausen. K., K. Nagel, An agent-based microsimulation model of swiss travel: First results. Network Spatial. Econ. 3, 23–41 (2003)

    Google Scholar 

  91. M. Balmer, K.W. Axhausen, K. Nagel, An agent based demand modeling framework for large scale micro-simulations (2005) Working paper, 329, Institute for Transport Planning and Systems (IVT), ETH Zurich, Switzerland.

    Google Scholar 

  92. D. Charypar, K. Nagel, Generating complete all-day activity plans with genetic algorithms. Transportation 32(4), 369–397 (2005)

    Google Scholar 

  93. K.W. Axhausen, T. Garling, Activity-based approaches to travel analysis: conceptual frameworks, models, and research problems. Transport Rev. 12(4), 323–341 (1992)

    Google Scholar 

  94. G. Laemmel, D. Grether, K. Nagel, The representation and implementation of time-dependent inundation in large-scale microscopic evacuation simulations. Transport. Res. C Emerg. Tech. 18(1), 84–98 (2010)

    Google Scholar 

  95. H. Taubenboeck, N. Goseberg, N. Setiadi, G. Laemmel, F. Moder, M. Oczipka, H. Klupfel, Roland Wahl, T. Schlurmann, G. Strunz, J. Birkmann, K. Nagel, F. Siegert, F. Lehmann, S. Dech, A. Gress, R. Klein, “last-mile” preparation for a potential disaster - interdisciplinary approach towards tsunami early warning and an evacuation information system for the coastal city of padang, indonesia. Nat. Hazards Earth Syst. Sci. 9(4), 1509–1528 (2009). http://www.nat-hazards-earth-syst-sci.net/9/1509/2009/

  96. J. Min, J.E. Beyler, Brown T.H., Y. Jun Son, A.T. Jones, Toward modeling and simulation of critical national infrastructure interdependencies. IIE Trans., 57–71 (2007) special issue on Industrial Engineering and Operations Research in Homeland Security.

    Google Scholar 

  97. C. Barrett, S. Eubank, M. Marathe, Modeling and simulation of large biological, information and socio-technical systems: An interaction based approach, in Interactive Computation, ed. by D. Goldin, S.A. Smolka, P. Wegner (Springer, Berlin, 2006), pp. 353–392. 10.1007/3-540-34874-3_14

    Google Scholar 

  98. National Infrastructure Simulation and Analysis Center (NISAC), see http://www.lanl.gov/programs/nisac/, last accessed on March 6, 2012

  99. W. Kermack, A. Mckendrick, Contributions to the mathematical theory of epidemics–i. Bull. Math. Biol. 53(1), 33–55 (1991)

    Google Scholar 

  100. W. Kermack, A. Mckendrick, Contributions to the mathematical theory of epidemics–ii. the problem of endemicity. Bull. Math. Biol. 53(1), 57–87 (1991)

    Google Scholar 

  101. W. Kermack, A. McKendrick, Contributions to the mathematical theory of epidemics–iii. further studies of the problem of endemicity. Bull. Math. Biol. 53(1), 89–118 (1991)

    Google Scholar 

  102. V. Colizza, A. Barrat, M. Bartholemy, A. Vespignani, The role of the airline transportation network in the prediction and predictability of global epidemics. Proc. Natl. Acad. Sci. USA 103(7), 2015–2020 (2006)

    Google Scholar 

  103. L. Hufnagel, D. Brockmann, T. Geisel, Forecast and control of epidemics in a globalized world. Proc. Natl. Acad. Sci. USA 101(42), 15124–15129 (2004)

    Google Scholar 

  104. S. Eubank, H. Guclu, Anil K.V.S., M.V. Marathe, A. Srinivasan, Z. Toroczkai, N. Wang, Modelling disease outbreaks in realistic urban social networks. Nature 429(6988), 180–184 (2004)

    Google Scholar 

  105. Artificial stock market, see http://sourceforge.net/projects/artstkmkt/, last accessed on March 6, 2012

  106. U-mart. http://www.u-mart.org/, last accessed on March 6, 2012

  107. Eurace. http://www.eurace.org/, last accessed on March 6, 2012

  108. A. Cangelosi, D. Parisi, Simulating the evolution of language. (Springer, Berline, 2002)

    Google Scholar 

  109. R. Dunbar, Grooming, gossip, and the evolution of language. (Harvard University Press, Cambridge, 1998)

    Google Scholar 

  110. M.A. Nowak, D.C. Krakauer, The evolution of language. Proc. Natl. Acad. Sci. USA 96(14), 8028 (1999)

    Google Scholar 

  111. D. Helbing, S. Balietti, How to create an innovation accelerator. Eur. Phys. J. Special Topics 195, 101–136 (2011)

    Google Scholar 

  112. M. Eigen, P. Schuster, The Hypercycle. Naturwissenschaften 65(1), 7–41 (1978)

    Google Scholar 

  113. R.K. Merton, The Matthew effect in science. The reward and communication systems of science are considered. Science (New York, N.Y.) 159(810), 56–63 (1968)

    Google Scholar 

  114. M. Mcpherson, L. Smith-Lovin, J.M. Cook, Birds of a Feather: Homophily in Social Networks. Annu. Rev. Sociol. 27, 415–444 (2001)

    Google Scholar 

  115. N.A. Christakis, J.H. Fowler, The spread of obesity in a large social network over 32 years. New Engl. J. Med. 357(4), 370–379 (2007)

    Google Scholar 

  116. N.A. Christakis, J.H. Fowler, The Collective Dynamics of Smoking in a Large Social Network. New Engl. J. Med. 358(21), 2249–2258 (2008)

    Google Scholar 

  117. K.P. Smith, N.A. Christakis, Social Networks and Health. Annu. Rev. Sociol. 34(1), 405–429 (2008)

    Google Scholar 

  118. T. Chadefaux, D. Helbing, How wealth accumulation can promote cooperation. PLoS One 5(10), e13471, 10 (2010)

    Google Scholar 

  119. D. Helbing, W. Yu, H. Rauhut, Self-organization and emergence in social systems: Modeling the coevolution of social environments and cooperative behavior. J. Math. Sociol. 35, 177–208 (2011)

    Google Scholar 

  120. A.P. Fiske, Structures of Social Life: The Four Elementary Forms of Human Relations: Communal Sharing, Authority Ranking, Equality Matching, Market Pricing. (Free Press, 1991)

    Google Scholar 

  121. Mark Granovetter, The strength of weak ties: a network theory revisited. Sociol. Theor. 1, 201–233 (1982)

    Google Scholar 

  122. G. Gigerenzer, P.M. Todd, ABC Research Group, Simple Heuristics That Make Us Smart (Oxford University Press, New York, 2000)

    Google Scholar 

  123. W.H. Greene, Econometric Analysis. (Prentice Hall, Upper Saddle River, NJ., 2008). Particularly Chap. 7.4: Model selection criteria

    Google Scholar 

  124. F. Diebold, Elements of forecasting, 3rd edn. (Thomson/South-Western, Mason, Ohio, 2003)

    Google Scholar 

  125. Swarm, http://www.swarm.org/, last accessed on March 6, 2012

  126. Repast, recursive porous agent simulation toolkit. http://repast.sourceforge.net/, last accessed on March 6, 2012

  127. Netlogo, http://ccl.northwestern.edu/netlogo/, last accessed on March 6, 2012

  128. Sesam, shell for simulated agent systems. http://www.simsesam.de/, last accessed on March 6, 2012

  129. Massive software. http://www.massivesoftware.com/, last accessed on March 6, 2012

  130. Wikipedia: Comparison of agent-based modeling software. http://en.wikipedia.org/wiki/Comparison_of_agent-based_modeling_software, last accessed on March 6, 2012

  131. S.F. Railsback, S.L. Lytinen, S.K. Jackson, Agent-based simulation platforms: review and development recommendations. Simulation 82(9), 609–623 (2006)

    Google Scholar 

  132. CVS Concurrent Version System. http://www.nongnu.org/cvs/, last accessed on March 6, 2012

  133. Subversion, http://subversion.apache.org/, last accessed on March 6, 2012

  134. Bazaar, http://bazaar.canonical.com/en/, last accessed on March 6, 2012

  135. Git - fast version control system. http://git-scm.com/

  136. D. Helbing, A. Johansson, Pedestrian, crowd and evacuation dynamics, in Encyclopedia of Complexity and Systems Science (Springer, Berlin, 2010), pp. 6476–6495

    Google Scholar 

  137. D. Helbing, A. Johansson, L. Buzna, Modelisation Du Traffic - Actes du groupe de travail, chapter New design solutions for pedestrian facilities based on recent empirical results and computer simulations, pp. 67–88. (2003) Actes No. 104

    Google Scholar 

  138. E. Brockfeld, R.D. Kuehne, P. Wagner, Toward benchmarking of microscopic traffic flow models. Transport. Res. Record 1852, 124–129 (2004)

    Google Scholar 

  139. E. Brockfeld, R.D. Kuehne, P. Wagner, Calibration and validation of microscopic traffic flow models. Transport. Res. Record 1876, 62–70 (2004)

    Google Scholar 

  140. D. Helbing, M. Schreckenberg, Cellular automata simulating experimental properties of traffic flows. Phys. Rev. E 59, R2505–R2508 (2010)

    Google Scholar 

  141. A.G. Hoekstra, J. Kroc, P.M.A. Sloot (eds.), chapter Game theoretical interactions of moving agents, in Simulating Complex Systems by Cellular Automata (Springer, Berlin, 2010), pp.219–239

    Google Scholar 

  142. D. Helbing, W. Yu, The future of social experimenting. PNAS 107(12), 5265–5266 (2010)

    Google Scholar 

  143. D. Helbing, T. Platkowski, Self-organization in space and induced by fluctuations. Int. J. Chaos Theor. Appl. 5(4), (2000)

    Google Scholar 

  144. R.J. LeVeque, Numerical Methods for Conservation Laws. (Birkhauser, Basel, 1992)

    Google Scholar 

  145. K. De Jong, Evolutionary computation: a unified approach, in GECCO ’08: Proceedings of the 2008 GECCO conference companion on Genetic and evolutionary computation (ACM, New York, NY, USA, 2008), pp. 2245–2258

    Google Scholar 

  146. P. Ciaccia, M. Patella, P. Zezula, M-tree: An Efficient Access Method for Similarity Search in Metric Spaces. VLDB J. 426–435 (1997)

    Google Scholar 

  147. L.A. Wolsey, An analysis of the greedy algorithm for the submodular set covering problem. Combinatorica 2(4), 385–393 (1982)

    Google Scholar 

  148. D. Freedman, R. Pisani, R. Purves, Statistics. (W. W. Norton & Company, New York, 1997)

    Google Scholar 

  149. E.C. Zeeman, Catastrophe Theory: Selected Papers, 1972–1977 (Addison-Wesley, 1980)

    Google Scholar 

  150. T.S. Kuhn, The Structure of Scientific Revolutions. (University Of Chicago Press, Chicago, 1962)

    Google Scholar 

  151. D. Helbing, A. Johansson, Evolutionary dynamics of populations with conflicting interactions: Classification and analytical treatment considering asymmetry and power. Phys. Rev. E 81, 016112+ (2010)

    Google Scholar 

  152. D. Helbing, A. Johansson, Cooperation, Norms, and Revolutions: A Unified Game-Theoretical Approach. PLoS ONE 5, e12530 (2010)

    Google Scholar 

  153. Benedikt Herrmann, Christian Thöni, and Simon Gächter. Antisocial Punishment Across Societies. Science 319(5868), 1362–1367 (2008)

    Google Scholar 

  154. D. Helbing, Quantitative Sociodynamics: Stochastic Methods and Models of Social Interaction Processes. (Springer, Berlin, 2010)

    Google Scholar 

  155. V. Nemytsky, V. Stepanov, Qualitative theory of differential equations. (Princeton University Press, Princeton NJ, 1960)

    Google Scholar 

  156. R. Albert, H. Jeong, A.-L. Barabasi, Error and attack tolerance of complex networks. Nature 406, 378–382 (2000)

    Google Scholar 

  157. M. Olson, The Logic of Collective Action : Public Goods and the Theory of Groups. Harvard economic studies, v. 124. (Harvard University Press, Cambridge, MA, 1971)

    Google Scholar 

  158. M. Moussaïd, D. Helbing, S. Garnier, A. Johansson, M. Combe, G. Theraulaz, Experimental study of the behavioural mechanisms underlying self-organization in human crowds. Proc. Biol. Sci. B: Biol. Sci. 276(1668), 2755–2762 (2009)

    Google Scholar 

  159. M. Treiber, A. Kesting, D. Helbing, Three-phase traffic theory and two-phase models with a fundamental diagram in the light of empirical stylized facts. Transport. Res. B: Methodological, 44(8–9), 983–1000 (2010)

    Google Scholar 

  160. A.-L. Barabási, R. Albert, Emergence of Scaling in Random Networks. Science 286(5439), 509–512 (1999)

    Google Scholar 

  161. John P. Ioannidis, Why Most Published Research Findings Are False. PLoS Med. 2(8), e124+ (2005)

    Google Scholar 

  162. I. Fisher, The Theory of Interest. (Augustus M. Kelley Publishers, NJ, 1930)

    Google Scholar 

  163. B.B. Mandelbrot, The variation of certain speculative prices. J. Bus. 36, 394–419 (1963)

    Google Scholar 

  164. R.N. Mantegna, E.H. Stanley, An Introduction to Econophysics: Correlations and Complexity in Finance. (Cambridge University Press, New York, 1999)

    Google Scholar 

  165. V. Pareto, Translation of Manuale di economia politica (“Manual of political economy”). (A.M. Kelley, New york, 1971)

    Google Scholar 

  166. George Zipf, The economy of geography (Addison-Wesley Publishing Co. Inc, Cambridge, 1949), pp.347–415

    Google Scholar 

  167. Ravenstein E. The birthplaces of the people and the laws of migration. The Geographical Magazine III, pp. 173–177, 201–206, 229–233 (1876)

    Google Scholar 

  168. G.K. Zipf, The p1 p2/d hypothesis: on the intercity movement of persons. Am. Soc. Rev. 11, 677–686 (1946)

    Google Scholar 

  169. J. Tinbergen, Shaping the world economy: suggestions for an international economic policy. (Twentieth Century Fund, New York, 1962)

    Google Scholar 

  170. C.A.E. Goodhart, Monetary relationships: a view from Threadneedle Street. Papers monetary Econ. 1 (1975)

    Google Scholar 

  171. J. Danielsson, The emperor has no clothes: Limits to risk modelling. J. Bank. Finance 26(7), 1273–1296 (2002)

    Google Scholar 

  172. D. Helbing, M. Treiber, N.J. Saam, Analytical investigation of innovation dynamics considering stochasticity in the evaluation of fitness. Phys. Rev. E 71, 067101 (2005)

    Google Scholar 

  173. D. Helbing, H. Ammoser, C. Kuehnert, chapter Disasters as extreme events and the importance of network interactions for disaster response management, in Extreme Events in Nature and Society (Springer, Berlin, 2005), pp. 319–348

    Google Scholar 

  174. Verfahren zur Koordination von vernetzten Abfertigungsprozessen oder zur Steuerung des Transports von mobilen Einheiten innerhalb eines Netzwerkes, (2010), see http://www.patent-de.com/20100805/DE102005023742B4.html, last accessed on March 6, 2012

  175. D. Helbing, A. Deutsch, S Diez, K Peters, Y Kalaidzidis, K. Padberg-Gehle, S. Laemmer, A. Johansson, G. Breier, F. Schulze, M. Zerial, Biologistics and the struggle for efficiency: concepts and perpesctives. Adv. Complex Syst. 12(06), 533+ (2009)

    Google Scholar 

  176. L. Hurwicz, Optimality and informational efficiency in resource allocation processes, in Mathematical Methods in the Social Sciences, ed. by K.J. Arrow, S. Karlin, P. Suppes (Stanford University Press, Stanford, CA, 1960), pp. 27–46

    Google Scholar 

  177. A. Kesting, M. Treiber, M. Schonhof, D. Helbing, Adaptive cruise control design for active congestion avoidance. Transport. Res. C Emerg. Tech. 16(6), 668–683 (2008)

    Google Scholar 

  178. D. Helbing, chapter Dynamic decision behavior and optimal guidance through information services: Models and experiments, in Human Behaviour and Traffic Networks (Springer, Berlin, 2004), pp. 47–95

    Google Scholar 

  179. D. Helbing, M. Christen, Physik der Finanzmärkte (Wirtschaftswoche, December 22, 2010)

    Google Scholar 

  180. N. Wiener, Cybernetics, Second Edition: or the Control and Communication in the Animal and the Machine. (The MIT Press, Cambridge, MA, 1965)

    Google Scholar 

  181. B. Fabien, Analytical System Dynamics: Modeling and Simulation. (Springer, Berlin, 2008)

    Google Scholar 

  182. S. Skogestad, I. Postlethwaite, Multivariable Feedback Control: Analysis and Design, 2nd edn. (Wiley-Interscience, New York, 2005)

    Google Scholar 

  183. A.L. Fradkov, I.V. Miroshnik, V.O. Nikiforov, Nonlinear and Adaptive Control of Complex Systems. (Springer, Berlin, 1999)

    Google Scholar 

  184. A. Johansson, D. Helbing, P. Shukla, Specification of the social force pedestrian model by evolutionary adjustment to video tracking data. Adv. Complex Syst. 10, 271–288 (2007)

    Google Scholar 

  185. Google flu trends. http://www.google.org/flutrends/, last accessed on March 6, 2012

  186. J. Vernon Henderson, A. Storeygard, D.N. Weil, Measuring economic growth from outer space. Technical Report 15199, National Bureau of Economic Research, July (2009) http://www.nber.org/papers/w15199.

  187. N.A. Christakis, J.H. Fowler, Social network sensors for early detection of contagious outbreaks. PloS one 5(9), e12948+, September (2010)

    Google Scholar 

  188. L. Buzna, K. Peters, H. Ammoser, C. Kuehnert, D. Helbing, Efficient response to cascading disaster spreading. Phys. Rev. E 75, 056107 (2006)

    Google Scholar 

  189. D. Helbing, S. Balietti, From social simulation to intgrative system design. visioneer white paper, 2010. http://www.visioneer.ethz.ch.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Helbing, D. (2012). Agent-Based Modeling. In: Helbing, D. (eds) Social Self-Organization. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24004-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24004-1_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24003-4

  • Online ISBN: 978-3-642-24004-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics