Skip to main content

Biodegradation of Mono-Aromatic Hydrocarbons by Fungi

  • Chapter
  • First Online:
Microbial Degradation of Xenobiotics

Part of the book series: Environmental Science and Engineering ((ESE))

Abstract

The biodegradation of organic compounds by fungal strains has been studied for several decades. Fungi have proven to be able to degrade a wide range of different pollutants, including aliphatic, aromatic and polycyclic aromatic compounds, but not necessarily as sole carbon and energy source.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Braun-Lüllemann A, Majcherczyk A, Hüttermann A (1997) Degradation of styrene by white-rot fungi. Appl Microbiol Biotechnol 47:150–155

    Article  Google Scholar 

  • Cerniglia CE, Crow SA (1981) Metabolism of aromatic hydrocarbons by yeast. Arch Microbiol 129:9–13

    Article  CAS  Google Scholar 

  • Cofone L, Walker JD, Cooney JJ (1973) Utilization of hydrocarbons by Cladosporium resinae. J Gen Microbiol 76:243–246

    Article  CAS  Google Scholar 

  • Cox HHJ, Houtman JHM, Doddema HJ, Harder W (1993) Growth of the black yeast Exophiala jeanselmei on styrene and styrene-related compounds. Appl Microbiol Biotechnol 39:372–376

    Article  CAS  Google Scholar 

  • Cox HHJ, Magielsen FJ, Doddema HJ, Harder W (1996) Influence of the water content and water activity on styrene degradation by Exophiala jeanselmei in biofilters. Appl Microbiol Biotechnol 45:851–856

    Article  CAS  Google Scholar 

  • Davies JS, Wellman AM, Zajic JE (1973) Hyphomycetes utilizing natural gas. Can J Microbiol 19:81–85

    Article  CAS  Google Scholar 

  • Dodge RH, Cerniglia CE, Gibson DT (1979) Fungal metabolism of biphenyl. Biochem J 178:223–230

    CAS  Google Scholar 

  • Estévez E, Veiga MC, Kennes C (2005a) Biofiltration of waste gases with the fungi Exophiala oligosperma and Paecilomyces variotii. Appl Microbiol Biotechnol 67:563–568

    Article  Google Scholar 

  • Estévez E, Veiga MC, Kennes C (2005b) Biodegradation of toluene by the new fungal isolates Paecilomyces variotii and Exophiala oligosperma. J Ind Microbiol Biotechnol 32:33–37

    Article  Google Scholar 

  • Fedorak PM, Westlake DWS (1986) Fungal metabolism of n-alkylbezenes. Appl Environ Microbiol 51:435–437

    CAS  Google Scholar 

  • García-Peña I, Ortiz I, Hernández S, Revah S (2008) Biofiltration of BTEX by the fungus Paecilomyces variotii. Intl Biodeter Biodegrad 62:442–447

    Article  Google Scholar 

  • Hammel KE (1992) Oxidation of aromatic pollutants by lignin degrading fungi and their extracellular peroxidises. Met Ions Biol Syst 28:41–60

    CAS  Google Scholar 

  • Hardison LK, Curry SS, Ciuffetti LM, Hyman MR (1997) Metabolism of diethyl ether and cometabolism of methyl tert-butyl ether by a filamentous fungus, a Graphium sp. Appl Environ Microbiol 63:3059–3067

    CAS  Google Scholar 

  • Hasegawa Y, Okamoto T, Obata H, Tokuyama T (1990) Utilization of aromatic compounds by Trichosporon cutaneum KUY-6A. J Ferment Bioeng 69(2):122–124

    Article  CAS  Google Scholar 

  • Hofrichter M, Günther T, Fritsche W (1993) Metabolism of phenol, chloro and nitrophenols by the Penicillium strain Bi 7/2 isolated from a contaminated soil. Biodegrad 3:415–421

    Article  CAS  Google Scholar 

  • Hofrichter M, Bublitz F, Fritsche W (1995) Cometabolic degradation of o-cresol and 2, 6-dimethylphenol by Penicillium frequentans Bi 7/2. J Basic Microbiol 35:303–313

    Article  CAS  Google Scholar 

  • Hughes KA, Bridge P, Clark MS (2007) Tolerance of antarctic soil fungi to hydrocarbons. Sci Total Environ 372:39–548

    Article  Google Scholar 

  • Jin Y, Veiga MC, Kennes C (2006) Performance optimization of the fungal biodegradation of ?-pinene in gas-phase biofilter. Proc Biochem 41:172–1728

    Google Scholar 

  • Jones KH, Trudgill PW, Hopper DJ (1993) Metabolism of p-cresol by the fungus Aspergillus fumigatus. Appl Environ Microbiol 59:1125–1130

    CAS  Google Scholar 

  • Kennes C, Lema JM (1994a) Degradation of major compounds of creosotes (PAH and phenols) by Phanerochaete chrysosporium. Biotechnol Lett 16:759–764

    Article  Google Scholar 

  • Kennes C, Lema JM (1994b) Simultaneous biodegradation of p-cresol and phenol by the basydiomycete Phanerochaete chrysosporium. J Indust Microbiol 13:311–314

    Article  CAS  Google Scholar 

  • Kennes C, Veiga MC (2004) Fungal biocatalysts in the biofiltration of VOC-polluted air. J Biotechnol 113:305–319

    Article  CAS  Google Scholar 

  • Kennes C, Rene ER, Veiga MC (2009) Bioprocesses for air pollution control. J Chem Technol Biotechnol 84:1419–1436

    Article  CAS  Google Scholar 

  • Lindley ND, Heydeman MT (1983) Uptake of vapour phase [14C]dodecane by whole mycelia of Cladosporium resinae. J Gen Microbiol 129:2301–2305

    CAS  Google Scholar 

  • Lindley ND, Heydeman MT (1986) The uptake on n-alkanes from alkane mixtures during growth of the hudrocarbon-utilizing fungus Cladosporium resinae. Appl Microbiol Biotechnol 23:384–388

    Article  CAS  Google Scholar 

  • Lindley ND, Pedley JF, Kay SP, Heydeman MT (1986) The metabolism of yeasts and filamentous fungi which degrade hydrocarbon fuels. Intl Biodeter 22:281–287

    CAS  Google Scholar 

  • Maheshwari R, Bharadwaj G, Bhat MK (2000) Thermophilic fungi: their physiology and enzymes. Microb Mol Biol Rev 64:461–488

    Article  CAS  Google Scholar 

  • Majcherczyk A, Johannes C, Hüttermann A (1998) Oxidation of polycyclic aromatic hydrocarbons (PAH) by laccase of Trametes versicolor. Enzyme Microb Technol 22:335–341

    Article  CAS  Google Scholar 

  • Middelhoven WJ (1993) Catabolism of benzene compounds by ascomycetous and basidiomycetous yeast and yeastlike fungi. Antonie van Leeuwenhoek 63:125–144

    Article  CAS  Google Scholar 

  • Middelhoven WJ, Scorzetti G, Fell JW (1999) Trichosporon guehoae sp nov., an anamorphic basidiomycetous yeast. Can J Microbiol 45:686–690

    Article  CAS  Google Scholar 

  • Middlehoven WJ, Scorzetti G, Fell JW (2000) Trichosporon veenshuisii sp nov., an alkane-assimilating anamorphic basidiomycetous yeast. Intl J Syst Evol Microbiol 50:381–187

    Article  Google Scholar 

  • Milstein O, Vered Y, Shragina L, Gressel J, Flowers HM, Hüttermann A (1983) Metabolism of lignin related aromatic compounds by Aspergillus japonicus. Arch Microbiol 135:147–154

    Article  CAS  Google Scholar 

  • Neujahr HY, Varga JM (1970) Degradation of phenols by intact cells and cell-free preparations of Trichosporon cutaneum. Eur J Biochem 13:37–44

    Article  CAS  Google Scholar 

  • Nikolova N, Nenov V (2005) BTEX degradation by fungi. Water Sci Technol 51:87–93

    CAS  Google Scholar 

  • Onodera M, Endo Y, Ogasawara N (1989) Utilization of short-chain hydrocarbons and accumulation of methylketones by a gaseous hydrocarbon assimilating mold, Scedosporium sp. A-4. Agric Biol Chem 53:1431–1432

    Article  CAS  Google Scholar 

  • Peelen S, Rietjens IMCM, Boersma MG, Vervoort J (1995) Conversion of phenol derivatives to hydroxylated products by phenol hydroxylase from Trichosporon cutaneum. Eur J Biochem 227:284–291

    Article  CAS  Google Scholar 

  • Prenafeta-Boldú FX, Kuhn A, Luykx DMAM, Anke H, van Groenestijn JW, de Bont JAM (2001a) Isolation and characterisation of fungi growing on volatile aromatic hydrocarbons as their sole carbon and energy source. Mycol Res 105:477–484

    Article  Google Scholar 

  • Prenafeta-Boldú FX, Luykx DMAM, Vervoort J, de Bont JAM (2001b) Fungal metabolism of toluene: monitoring of fluorinated analogs by 19F nuclear magnetic resonance spectroscopy. Appl Environ Microbiol 67:1030–1034

    Article  Google Scholar 

  • Prenafeta-Boldú FX, Vervoort J, Grotenhuis JTC, van Groenestijn JW (2002) Substrate interactions during the biodegradation of benzene, toluene, ethylbenzene, and xylene (BTEX) hydrocarbons by the fungus Cladophialophora sp. strain T1. Appl Environ Microbiol 68:2660–2665

    Article  Google Scholar 

  • Qi B, Moe WM, Kinney KA (2002) Biodegradation of volatile organic compounds by five fungal species. Appl Microbiol Biotechnol 58:684–689

    Article  CAS  Google Scholar 

  • Rafin C, Potin O, Veignie E, Lounes-Hadj Sahraoui A, Sancholle M (2000) Degradation of benzo[A]pyrene as sole carbon source by a non white rot fungus, Fusarium solani. Polycyclic Arom Hydroc 21:311–329

    Article  CAS  Google Scholar 

  • Rene ER, Špa?ková R, Veiga MC, Kennes C (2010a) Biofiltration of mixtures of gas-phase styrene and acetone with the fungus Sporothrix variecibatus. J Hazard Mater 184:204–214

    Article  CAS  Google Scholar 

  • Rene ER, Veiga MC, Kennes C (2010b) Biodegradation of gas-phase styrene using Sporothrix variecibatus: Impact of pollutant load and transient operations. Chemosphere 79:221–227

    Article  CAS  Google Scholar 

  • Sakaguchi K, Kurane R, Murata M (1975) Assimilation of formaldehyde and other C1-compounds by Gliocladium deliquescens and Paecilomyces variotii. Agric Biol Chem 39:1605–1702

    Article  Google Scholar 

  • Schauer F, Henning K, Pscheidl H, Wittich RM, Fortnagel P, Wilkes H, Sinnwell V, Francke W (1995) Biotransformation of diphenyl ether by the yeast Trichosporon beigelii SBUG 752. Biodegrad 6:173–180

    Article  CAS  Google Scholar 

  • Scow KM, Li D, Manilal VB, Alexander M (1990) Mineralization of organic compounds at low concentrations by filamentous fungi. Mycol Res 94:793–398

    Article  CAS  Google Scholar 

  • Sietmann R, Hammer E, Specht M, Cerniglia CE, Schuer F (2001) Novel ring cleavage products in the biotransformation of biphenyl by the yeast Trichosporon mucoides. Appl Environ Microbiol 67:4158–4165

    Article  CAS  Google Scholar 

  • Tortella GR, Diez MC (2005) Fungal diversity and use in decomposition of environmental pollutants. Crit Rev Microbiol 31:197–212

    Article  CAS  Google Scholar 

  • Van Groenestijn JW, Heiningen WNM, Kraakman NJR (2001) Biofilters based on the action of fungi. Water Sci Technol 44:227–232

    Google Scholar 

  • Weber FJ, Hage KC, de Bont JAM (1995) Growth of the fungus Cladosporium sphaerospermum with toluene as the sole carbon and energy source. Appl Environ Microbiol 61:3562–3566

    CAS  Google Scholar 

  • Wiseman A, Gondal J, Sims P (1975) 4-Hydroxylation of biphenyl by yeasts containing cytochrome P-450. Biochem Soc Trans 3:278–285

    CAS  Google Scholar 

  • Yadav JS, Reddy CA (1993) Degradation of benzene, toluene, ethylbenzene, and xylenes (BTEX) by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol 59:756–762

    CAS  Google Scholar 

  • Yadav JS, Doddapaneni H, Subramanian V (2006) P450ome of the white rot fungus Phanerochaete chrysosporium: structure, evolution and regulation of expression of genomic P450 clusters. Biochem Soc Trans 34:1165–1169

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Kennes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kennes, C., Veiga, M.C. (2012). Biodegradation of Mono-Aromatic Hydrocarbons by Fungi. In: Singh, S. (eds) Microbial Degradation of Xenobiotics. Environmental Science and Engineering(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23789-8_6

Download citation

Publish with us

Policies and ethics