Skip to main content

DTW for Matching Radon Features: A Pattern Recognition and Retrieval Method

  • Conference paper
Advanced Concepts for Intelligent Vision Systems (ACIVS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6915))

Abstract

In this paper, we present a method for pattern such as graphical symbol and shape recognition and retrieval. It is basically based on dynamic programming for matching the Radon features. The key characteristic of the method is to use DTW algorithm to match corresponding pairs of histograms at every projecting angle. This allows to exploit the Radon property to include both boundary as internal structure of shapes, while avoiding compressing pattern representation into a single vector and thus miss information, thanks to the DTW. Experimental results show that the method is robust to distortion and degradation including affine transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Attalla, E., Siy, P.: Robust shape similarity retrieval based on contour segmentation polygonal multiresolution and elastic matching. PR 38(12), 2229–2241 (2005)

    Google Scholar 

  2. Bailey, R.R., Srinath, M.: Orthogonal moment features for use with parametric and non-parametric classifiers. IEEE PAMI 18(4), 389–399 (1996)

    Article  Google Scholar 

  3. Bandera, C.U.A., Sandoval, F.: Non-parametric planar shape representation based on adaptive curvature functions. PR 35, 43–53 (2002)

    MATH  Google Scholar 

  4. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE PAMI 24(4), 509–522 (2002)

    Article  Google Scholar 

  5. Bernier, T., Landry, J.A.: A new method for representing and matching shapes of natural objects. PR 36(8), 1711–1723 (2003)

    Google Scholar 

  6. Boulgouris, N.V., Chi, Z.X.: Gait recognition using radon transform and linear discriminant analysis. IEEE Image Processing 16(3), 731–740 (2007)

    Article  MathSciNet  Google Scholar 

  7. Bunke, H., Riesen, K.: Recent advances in graph-based pattern recognition with applications in document analysis. PR 44(5), 1057–1067 (2011)

    MATH  Google Scholar 

  8. Chong, C., Raveendran, P., Mukudan, R.: A comparative analysis of algorithms for fast computation of zernike moments. PR 36, 731–742 (2003)

    MATH  Google Scholar 

  9. Coetzer, J.: Off-line Signature Verification. Ph.D. thesis, University of Stellenbosch (2005)

    Google Scholar 

  10. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in pattern recognition. IJPRAI 18(3), 265–298 (2004)

    Google Scholar 

  11. Deans, S.R.: Applications of the Radon Transform. Wiley Interscience Publications, New York (1983)

    MATH  Google Scholar 

  12. El-ghazal, A., Basir, O., Belkasim, S.: Farthest point distance: A new shape signature for fourier descriptors. Signal Processing: Image Communication 24(7), 572–586 (2009)

    Google Scholar 

  13. Flusser, J.: On the independence of rotation moment invariants. PR 33(9), 1405–1410 (2000)

    Google Scholar 

  14. Fränti, P., Mednonogov, A., Kyrki, V., Kälviäinen, H.: Content-based matching of line-drawing images using the hough transform. IJDAR 3(2), 117–124 (2000)

    Article  Google Scholar 

  15. GREC: International symbol recognition contest at grec2003 (2003), http://www.cvc.uab.es/grec2003/SymRecContest/

  16. Jafari-Khouzani, K., Soltanian-Zadeh, H.: Radon transform orientation estimation for rotation invariant texture analysis. IEEE PAMI 27(6), 1004–1008 (2005)

    Article  Google Scholar 

  17. Jain, A.K., Duin, R.P.W., Mao, J.: Statistical pattern recognition: A review. IEEE PAMI 22(1), 4–37 (2000)

    Article  Google Scholar 

  18. Santosh,K.C., Wendling, L., Lamiroy, B.: Using spatial relations for graphical symbol description. In: ICPR. pp. 2041–2044 (2010)

    Google Scholar 

  19. Kim, W.Y., Kim, Y.S.: A region-based shape descriptor using zernike moments. Signal Processing: Image Communication 16(1-2), 95–102 (2000)

    Google Scholar 

  20. Kruskall, J.B., Liberman, M.: The symmetric time warping algorithm: From continuous to discrete. In: Time Warps, String Edits and Macromolecules: The Theory and Practice of String Comparison, pp. 125–161. Addison-Wesley, Reading (1983)

    Google Scholar 

  21. Latecki, L.J., Lakmper, R., Eckhardt, U.: Shape descriptors for non-rigid shapes with a single closed contour. In: CVPR, pp. 1424–1429 (2000)

    Google Scholar 

  22. Leavers, V.F.: Use of the two-dimensional radon transform to generate a taxonomy of shape for the characterization of abrasive powder particles. IEEE PAMI 22(12), 1411–1423 (2000)

    Article  Google Scholar 

  23. Loncaric, S.: A survey of shape analysis techniques. PR 31(8), 983–1001 (1998)

    Google Scholar 

  24. Jayadevan, R., Kolhe, S.R., Patil, P.M.: Dynamic time warping based static hand printed signature verification. PRR 4(1), 52–65 (2009)

    Google Scholar 

  25. Salvador, S., Chan, P.: Toward accurate dynamic time warping in linear time and space. Intell. Data Anal. 11(5), 561–580 (2007)

    Google Scholar 

  26. Sebastian, T.B., Klein, P.N., Kimia, B.B.: Recognition of shapes by editing shock graphs. In: ICCV, pp. 755–762 (2001)

    Google Scholar 

  27. Tabbone, S., Wendling, L., Salmon, J.-P.: A new shape descriptor defined on the radon transform. CVIU 102(1), 42–51 (2006)

    Google Scholar 

  28. Teh, C.H., Chin, R.T.: On image analysis by the methods of moments. IEEE PAMI 10(4), 496–513 (1988)

    Article  MATH  Google Scholar 

  29. Wendling, L., Rendek, J., Matsakis, P.: Selection of suitable set of decision rules using choquet integral. In: SSPR/SPR, pp. 947–955 (2008)

    Google Scholar 

  30. Zhang, D., Lu, G.: Shape-based image retrieval using generic fourier descriptor. Signal Processing: Image Communication 17, 825–848 (2002)

    Google Scholar 

  31. Zhang, D., Lu, G.: Review of shape representation and description techniques. PR 37(1), 1–19 (2004)

    Google Scholar 

  32. Zhang, D., Lu, G.: Study and evaluation of different fourier methods for image retrieval. IVC 23(1), 33–49 (2005)

    Article  Google Scholar 

  33. Zhu, S.C., Yuille, A.L.: Forms: A flexible object recognition and modelling system. IJCV 20(3), 187–212 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

K.C., S., Lamiroy, B., Wendling, L. (2011). DTW for Matching Radon Features: A Pattern Recognition and Retrieval Method. In: Blanc-Talon, J., Kleihorst, R., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2011. Lecture Notes in Computer Science, vol 6915. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23687-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23687-7_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23686-0

  • Online ISBN: 978-3-642-23687-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics