Skip to main content

Plant Root Interactions

  • Chapter
  • First Online:
Biocommunication of Plants

Part of the book series: Signaling and Communication in Plants ((SIGCOMM,volume 14))

Abstract

The modular structure of plant root systems enables a high degree of flexibility (or plasticity) in responding to prevailing conditions in the soil, including resource distribution. However, more recently, it has been suggested that root-root interactions are more sophisticated than simply being driven by resource availability alone. Some evidence suggests that plant roots may be able to recognise their own roots from those of other plants even when the other plant is a genetically identical individual, while other studies suggest plants may be able to identify related individuals (kin) from non-related individuals and modify their competitive interactions as a result. The results of these studies together with their limitations will be reviewed here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allard RW, Adams J (1969) Population studies in predominantly self-pollinating species. XIII Intergenotypic competition and population structure in barley and wheat. Am Naturalist 103:621–645

    Article  Google Scholar 

  • Antonovics J, Ellstrand NC (1984) Experimental studies of the evolutionary significance of sexual reproduction. I. A test of the frequency-dependent selection hypothesis. Evolution 38:103–115

    Article  Google Scholar 

  • Barto K, Friese C, Cipollini D (2010) Arbuscular mycorrhizal fungi protect a native plant from allelopathic effects of an invader. J Chem Ecol 36:351–360

    Article  PubMed  CAS  Google Scholar 

  • Berntson GM, McConnaughay KDM, Bazzaz FA (1993) Elevated CO2 alters deployment of roots in ‘small’ growth containers. Oecologia 94:558–564

    Article  Google Scholar 

  • Bhatt MV, Khandelwal A, Dudley SA (2011) Kin recognition, not competitive interactions, predicts root allocation in young Cakile edentula seedling pairs. New Phytologist 189:1135–1142

    Article  PubMed  Google Scholar 

  • Biedrzycki ML, Jilany TA, Dudley SA, Bais HP (2010) Root exudates mediate kin recognition in plants. Commun Integrat Biol 3:28–35

    Article  Google Scholar 

  • Brunner I, Ruf M, Lüscher P, Sperisen C (2004) Molecular markers reveal extensive intraspecific below-ground overlap of silver fir fine roots. Mol Ecol 13:3595–3600

    Article  PubMed  CAS  Google Scholar 

  • Cahill JF, McNickle GG, Haag JJ, Lamb EG, Nyanumba SM, St. Clair CC (2010) Plants integrate information about nutrients and neighbours. Science 328:1657

    Article  PubMed  CAS  Google Scholar 

  • Caldwell MM, Eissenstat DM, Richards JH, Allen MF (1985) Competition for phosphorus: differential uptake from dual-isotope-labelled soil interspaces between shrub and grass. Science 229:384–386

    Article  PubMed  CAS  Google Scholar 

  • Caldwell MM, Manwaring JH, Jackson RB (1991) Exploitation of phosphate from fertile soil microsites by three Great Basin perennials when in competition. Funct Ecol 5:757–764

    Article  Google Scholar 

  • Caldwell MM, Manwaring JH, Durham SL (1996) Species interactions at the level of fine roots in the field: influence of soil nutrient heterogeneity and plant size. Oecologia 106:440–447

    Article  Google Scholar 

  • Callaway RM, Mahall BE (2007) Family roots. Nature 448:145–147

    Article  PubMed  CAS  Google Scholar 

  • Callaway RM, Cipollini D, Barto K, Thelen GC, Hallett SG, Prati D, Stinson K, Klironomos J (2008) Novel weapons: invasive plant suppresses fungal mutualists in America but not in its native Europe. Ecology 89:1043–1055

    Article  PubMed  Google Scholar 

  • Cheplick GP, Kane KH (2004) Genetic relatedness and competition in Triplasis purpurea (Poaceae): resource partitioning or kin selection? Int J Plant Sci 165:623–630

    Article  Google Scholar 

  • Crook MJ, Ennos AR, Banks JR (1997) The function of buttress roots: a comparative study of the anchorage systems of buttressed (Aglaia and Nephelium ramboutan species) and non-buttressed (Mallotus wrayi) tropical trees. J Exp Bot 48:1703–1716

    CAS  Google Scholar 

  • D’Antonio CM, Mahall BE (1991) Root profiles and competition between the invasive, exotic perennial, Carpobrotus edulis and two native shrub species in California coastal scrub. Am J Bot 78:885–894

    Article  Google Scholar 

  • de Kroon H, Mommer L, Nishiwaki A (2003) Root competition: towards a mechanistic understanding. In: de Kroon H, Visser EJW (eds) Root ecology, vol 168. Springer, Berlin, pp 215–234

    Google Scholar 

  • Donohue K (2003) The influence of neighbour relatedness on multilevel selection in the Great Lakes sea rocket. Am Naturalist 162:77–92

    Article  Google Scholar 

  • Dudley SA, File AL (2007) Kin recognition in an annual plant. Biol Lett 3:435–438

    Article  PubMed  Google Scholar 

  • Dudley SA, File AL (2008) Yes, kin recognition in plants. Biol Lett 4:69–70

    Article  Google Scholar 

  • Eissenstat DM, Caldwell MM (1988) Competitive ability is linked to rates of water extraction: a field study of two aridland tussock grasses. Oecologia 75:1–7

    Article  Google Scholar 

  • Falik O, Reides P, Gersani M, Novoplansky A (2005) Root navigation by self inhibition. Plant Cell Environ 28:562–569

    Article  Google Scholar 

  • Fitter AH (1986) Spatial and temporal patterns of root activity in a species-rich alluvial grassland. Oecologia 69:594–599

    Article  Google Scholar 

  • Fitter AH, Moyersoen B (1996) Evolutionary trends in root-microbe symbiosis. Philos Trans R Soc Lond B Biol Sci 351:1367–1375

    Article  Google Scholar 

  • Gersani M, Abramsky Z, Falik O (1998) Density-dependent habitat selection in plants. Evol Ecol 12:223–234

    Article  Google Scholar 

  • Gersani M, Brown JS, O’Brien EE, Maina GM, Abramsky Z (2001) Tragedy of the commons as a result of root competition. J Ecol 89:660–669

    Article  Google Scholar 

  • Gruntman M, Novoplansky A (2004) Physiologically mediated self/non-self discrimination in roots. Proc Natl Acad Sci USA 101:3863–3867

    Article  PubMed  CAS  Google Scholar 

  • Hess L, de Kroon H (2007) Effects of rooting volume and nutrient availability as an alternative explanation for root self/non-self discrimination. J Ecol 95:241–251

    Article  Google Scholar 

  • Hodge A (2004) The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytologist 162:9–24

    Article  Google Scholar 

  • Hodge A (2009a) Roots: the acquisition of water and nutrients from the heterogeneous soil environment. In: Lüttge U, Beyschlag W, Büdel B, Francis D (eds) Progress in botany, vol 71. Springer, Berlin, pp 307–337

    Google Scholar 

  • Hodge A (2009b) Root decisions. Plant Cell Environ 32:628–640

    Article  PubMed  Google Scholar 

  • Hodge A, Berta G, Doussan C, Merchan F, Crespi M (2009) Plant root growth, architecture and function. Plant Soil 321:153–187

    Article  CAS  Google Scholar 

  • Holzapfel C, Alpert P (2003) Root cooperation in a clonal plant: connected strawberries segregate roots. Oecologia 134:72–77

    Article  PubMed  Google Scholar 

  • Huber-Sannwald E, Pyke DA, Caldwell MM (1996) Morphological plasticity following species-specific recognition and competition in two perennial grasses. Am J Bot 83:919–931

    Article  Google Scholar 

  • Hunt ER, Zakir NJD, Nobel PS (1987) Water cost and water revenues for established and rain-induced roots of Agave deserti. Funct Ecol 1:125–129

    Article  Google Scholar 

  • Inderjit, Callaway RM (2003) Experimental designs for the study of allelopathy. Plant Soil 256:1–11

    Article  CAS  Google Scholar 

  • Jones DL, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytologist 163:459–480

    Article  CAS  Google Scholar 

  • Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant Soil 321:5–33

    Article  CAS  Google Scholar 

  • Kabouw P, Nab M, van Dam NM (2010) Activated carbon addition affects substrate pH and germination of six plant species. Soil Biol Biochem 42:1165–1167

    Article  CAS  Google Scholar 

  • Karban R, Shiojiri K (2009) Self-recognition affects plant communication and defense. Ecol Lett 12:502–506

    Article  PubMed  Google Scholar 

  • Klemens JA (2008) Kin recognition in plants? Biol Lett 4:67–68

    Article  PubMed  Google Scholar 

  • Krannitz PG, Caldwell MM (1995) Root growth responses of three Great Basin perennials to intra- and interspecific contact with other roots. Flora 190:161–167

    Google Scholar 

  • Kulmatiski A, Beard KH (2006) Activated carbon as a restoration tool: potential for control of invasive plants in abandoned agricultural fields. Restoration Ecol 14:251–257

    Article  Google Scholar 

  • Laird RA, Aarssen LW (2005) Size inequality and the tragedy of the commons phenomenon in plant competition. Plant Ecol 179:127–131

    Article  Google Scholar 

  • Lang C, Dolynska A, Finkeldey R, Polle A (2010) Are beech (Fagus sylvatica) roots territorial? Forest Ecol Manage 260:1212–1217

    Article  Google Scholar 

  • Lau JA, Puliafico KP, Kopshever JA, Steltzer H, Jarvis EP, Schwarzländer M, Strauss SY, Hufbauer RA (2008) Inference of allelopathy is complicated by effects of activated carbon on plant growth. New Phytologist 178:412–423

    Article  PubMed  CAS  Google Scholar 

  • Mahall BE, Callaway RM (1991) Root communication among desert shrubs. Proc Natl Acad Sci USA 88:874–876

    Article  PubMed  CAS  Google Scholar 

  • Mahall BE, Callaway RM (1992) Root communication mechanisms and intracommunity distributions of two Mojave desert shrubs. Ecology 73:2145–2151

    Article  Google Scholar 

  • Mahall BE, Callaway RM (1996) Effects of regional origin and genotype on intraspecific root communication in the desert shrub Ambrosia dumosa (Asteraceae). Am J Bot 83:93–98

    Article  Google Scholar 

  • Maina GM, Brown JS, Gersani M (2002) Intra-plant versus inter-plant root competition in beans: avoidance, resource matching or tragedy of the commons. Plant Ecol 160:235–247

    Article  Google Scholar 

  • Malamy JE (2005) Intrinsic and environmental response pathways that regulate root system architecture. Plant Cell Environ 28:67–77

    Article  PubMed  CAS  Google Scholar 

  • Masclaux F, Hammond RL, Meunier J, Gouhier-Darimont C, Keller L, Reymond P (2010) Competitive ability not kinship affects growth of Arabidopsis thaliana accessions. New Phytologist 185:322–331

    Article  PubMed  CAS  Google Scholar 

  • McConnaughay KDM, Bazzaz FA (1991) Is physical space a soil resource? Ecology 72:94–103

    Article  Google Scholar 

  • McConnaughay KDM, Berntson GM, Bazzaz FA (1993) Limitations to CO2-induced growth enhancement in pot studies. Oecologia 94:550–557

    Article  Google Scholar 

  • Milla R, Forero DM, Escudero A, Iriondo JM (2009) Growing with siblings: a common ground for cooperation or for fiercer competition among plants? Proc R Soc Lond Ser B Biol Sci 276:2531–2540

    Article  Google Scholar 

  • Murphy GP, Dudley SA (2007) Above- and below-ground cues elicit independent responses. J Ecol 95:261–272

    Article  Google Scholar 

  • Murphy GP, Dudley SA (2009) Kin recognition: competition and cooperation in Impatiens (Balsaminaceae). Am J Bot 96:1990–1996

    Article  PubMed  Google Scholar 

  • Newsham KK, Fitter AH, Watkinson AR (1995) Multi-functionality and biodiversity in arbuscular mycorrhizas. Trends Ecol Evol 10:407–411

    Article  PubMed  CAS  Google Scholar 

  • Nobel PS, Schulte PJ, North GB (1990) Water influx characteristics and hydraulic conductivity for roots of Agave deserti Engelm. J Exp Bot 41:409–415

    Article  Google Scholar 

  • O’Brien EE, Brown JS (2008) Games roots play: effects of soil volume and nutrients. J Ecol 96:438–446

    Article  Google Scholar 

  • O’Brien EE, Gersani M, Brown JS (2005) Root proliferation and seed yield in response to spatial heterogeneity of below-ground competition. New Phytologist 168:401–412

    Article  PubMed  Google Scholar 

  • Pringle A, Bever JD, Gardes A, Parrent JL, Rillig MC, Klironomos JN (2009) Mycorrhizal symbioses and plant invasions. Annu Rev Ecol Evol Syst 40:699–715

    Article  Google Scholar 

  • Read DJ, Perez-Moreno J (2003) Mycorrhizas and nutrient cycling in ecosystems—a journey towards relevance? New Phytologist 157:475–492

    Article  Google Scholar 

  • Roberts KJ, Anderson RC (2001) Effect of garlic mustard [Alliaria petiolata (Beib. Cavara & Grande)] extracts on plants and arbuscular mycorrhizal (AM) fungi. Am Midland Naturalist 146:146–152

    Article  Google Scholar 

  • Schenk HJ (2006) Root competition: beyond resource depletion. J Ecol 94:725–739

    Article  Google Scholar 

  • Schenk HJ, Callaway RM, Mahall BE (1999) Spatial root segregation: are plants territorial? Adv Ecol Res 28:145–180

    Article  CAS  Google Scholar 

  • Semchenko M, Hutchings MJ, John EA (2007) Challenging the tragedy of the commons in root competition: confounding effects of neighbour presence and substrate volume. J Ecol 95:252–260

    Article  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic Press Ltd, London

    Google Scholar 

  • Song YY, Zeng RS, Xu JF, Li J, Shen X, Yihdego WG (2010) Interplant communication of tomato plants through underground common mycorrhizal networks. PloS One 5:e13324

    Article  PubMed  Google Scholar 

  • Sultan SE (2009) Plant developmental responses to the environment: eco-devo insights. Curr Opin Plant Biol 13:1–6

    Google Scholar 

  • Thomas RB, Strain BR (1991) Root restriction as a factor in photosynthetic acclimation of cotton seedlings grown in elevated carbon dioxide. Plant Physiol 96:627–634

    Article  PubMed  CAS  Google Scholar 

  • Weisshuhn K, Prati D (2009) Activated carbon may have undesired side effects for testing allelopathy in invasive plants. Basic Appl Ecol 10:500–507

    Article  CAS  Google Scholar 

  • Willson MF, Hoppes WG, Goldman DA, Thomas PA, Katusic-Malmborg PL, Bothwell JL (1987) Sibling competition in plants: an experimental study. Am Naturalist 129:304–311

    Article  Google Scholar 

  • Wolfe BE, Rodgers VL, Stinson KA, Pringle A (2008) The invasive plant Alliaria petiolata (garlic mustard) inhibits ectomycorrhizal fungi in its introduced range. J Ecol 96:777–783

    Article  Google Scholar 

  • Wurst S, van Beersum S (2009) The impact of soil organism composition and activated carbon on grass–legume competition. Plant Soil 314:1–9

    Article  CAS  Google Scholar 

  • Wurst S, Vender V, Rillig MC (2010) Testing for allelopathic effects in plant competition: does activated carbon disrupt plant symbioses? Plant Ecol 211:19–26

    Article  Google Scholar 

  • Zhang Q, Yang R, Tang J, Yang H, Hu S, Chen X (2010) Positive feedback between mycorrhizal fungi and plants influences plant invasion success and resistance to invasion. PloS One 5:e12380

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

I thank Alastair Fitter for his insightful comments on an earlier draft of this text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Hodge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hodge, A. (2012). Plant Root Interactions. In: Witzany, G., Baluška, F. (eds) Biocommunication of Plants. Signaling and Communication in Plants, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23524-5_9

Download citation

Publish with us

Policies and ethics