Skip to main content

Jasmonates in Plant Defense Responses

  • Chapter
  • First Online:
Biocommunication of Plants

Part of the book series: Signaling and Communication in Plants ((SIGCOMM,volume 14))

Abstract

Plants constantly interact with a wide range of life-threatening organisms including herbivorous arthropods and pathogenic microbes. The plant fatty acid–derived jasmonates produced in response to biotic stresses are essential to survival. These oxylipins constitute part of the plant’s sophisticated strategy to defend itself. Upon biotic attack, the increased accumulation of these metabolites diverts energy away from growth needs and channels it toward defense. The complex interplay between jasmonates and invader-specific elicitors provides the plant with gene expression regulatory potential to launch effective responses against the invaders. Such responses can be either direct, by producing molecules that are toxic to the invading organisms, or indirect, by attracting the natural enemies of such invaders. Jasmonates are also critical components in mediating the plant stress-induced systemic signal(s) to activate defense-related genes. The availability of jasmonate mutants has been crucial in identifying the roles these metabolites play in plant stress responses. In this chapter, we present an overview of jasmonate function in insect and pathogen defense, the cross talk between jasmonates and other phytohormones in fine-tuning such defenses, and the possible role these oxylipins play in mediating mechanoresponses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afitlhile, M.M., H. Fukushige, M. Nishimura, and D.F. Hildebrand. 2005. A defect in glyoxysomal fatty acid beta-oxidation reduces jasmonic acid accumulation in Arabidopsis. Plant Physiol Biochem 43: 603–609.

    PubMed  CAS  Google Scholar 

  • Albrecht, T., A. Kehlen, K. Stahl, H.D. Knofel, G. Sembdner, and E.W. Weiler. 1993. Quantification of rapid, transient increases in jasmonic acid in wounded plants using a monoclonal antibody. Planta 191: 86–94.

    CAS  Google Scholar 

  • Balbi, V., and A. Devoto. 2008. Jasmonate signalling network in Arabidopsis thaliana: crucial regulatory nodes and new physiological scenarios. New Phytol 177: 301–318.

    PubMed  CAS  Google Scholar 

  • Bartel, B. 1997. Auxin biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 48: 51–66.

    PubMed  CAS  Google Scholar 

  • Berrocal-Lobo, M., and A. Molina. 2004. Ethylene response factor 1 mediates Arabidopsis resistance to the soilborne fungus fusarium oxysporum. Mol Plant Microbe Interact 17: 763–770.

    PubMed  CAS  Google Scholar 

  • Birkett, M.A., C.A. Campbell, K. Chamberlain, E. Guerrieri, A.J. Hick, J.L. Martin, M. Matthes, J.A. Napier, J. Pettersson, J.A. Pickett, G.M. Poppy, E.M. Pow, B.J. Pye, L.E. Smart, G.H. Wadhams, L.J. Wadhams, and C.M. Woodcock. 2000. New roles for cis-jasmone as an insect semiochemical and in plant defense. Proc Natl Acad Sci USA 97: 9329–9334.

    PubMed  CAS  Google Scholar 

  • Bostock, R.M. 2005. Signal crosstalk and induced resistance: straddling the line between cost and benefit. Annu Rev Phytopathol 43: 545–580.

    PubMed  CAS  Google Scholar 

  • Boter, M., O. Ruiz-Rivero, A. Abdeen, and S. Prat. 2004. Conserved MYC transcription factors play a key role in jasmonate signaling both in tomato and Arabidopsis. Genes Dev 18: 1577–1591.

    PubMed  CAS  Google Scholar 

  • Braam, J. 1992. Regulation of expression of calmodulin and calmodulin-related genes by environmental stimuli in plants. Cell Calcium 13: 457–463.

    PubMed  CAS  Google Scholar 

  • Braam, J. 2005. In touch: plant responses to mechanical stimuli. New Phytol 165: 373–389.

    PubMed  Google Scholar 

  • Braam, J., and R.W. Davis. 1990. Rain-, wind-, and touch-induced expression of calmodulin and calmodulin-related genes in Arabidopsis. Cell 60: 357–364.

    PubMed  CAS  Google Scholar 

  • Browse, J. 2005. Jasmonate: an oxylipin signal with many roles in plants. Vitam Horm 72: 431–456.

    PubMed  CAS  Google Scholar 

  • Bruce, T.J., M.C. Matthes, K. Chamberlain, C.M. Woodcock, A. Mohib, B. Webster, L.E. Smart, M.A. Birkett, J.A. Pickett, and J.A. Napier. 2008. cis-jasmone induces Arabidopsis genes that affect the chemical ecology of multitrophic interactions with aphids and their parasitoids. Proc Natl Acad Sci USA 105: 4553–4558.

    PubMed  CAS  Google Scholar 

  • Chassot, C., A. Buchala, H.J. Schoonbeek, J.P. Metraux, and O. Lamotte. 2008. Wounding of Arabidopsis leaves causes a powerful but transient protection against botrytis infection. Plant J 55: 555–567.

    PubMed  CAS  Google Scholar 

  • Chehab, E.W., R. Kaspi, T. Savchenko, H. Rowe, F. Negre-Zakharov, D. Kliebenstein, and K. Dehesh. 2008. Distinct roles of jasmonates and aldehydes in plant-defense responses. PLoS One 3: e1904.

    PubMed  Google Scholar 

  • Chehab, E.W., E. Eich, and J. Braam. 2009. Thigmomorphogenesis: a complex plant response to mechano-stimulation. J Exp Bot 60: 43–56.

    PubMed  CAS  Google Scholar 

  • Chehab, E.W., S. Kim, T. Savchenko, D. Kliebenstein, K. Dehesh, and J. Braam. 2011. Intronic T-DNA insertion renders Arabidopsis opr3 a conditional JA producing mutant. Plant Physiol 156: 770–778.

    PubMed  CAS  Google Scholar 

  • Chen, H., B.C. McCaig, M. Melotto, S.Y. He, and G.A. Howe. 2004. Regulation of plant arginase by wounding, jasmonate, and the phytotoxin coronatine. J Biol Chem 279: 45998–46007.

    PubMed  CAS  Google Scholar 

  • Chen, H., C.G. Wilkerson, J.A. Kuchar, B.S. Phinney, and G.A. Howe. 2005. Jasmonate-inducible plant enzymes degrade essential amino acids in the herbivore midgut. Proc Natl Acad Sci USA 102: 19237–19242.

    PubMed  CAS  Google Scholar 

  • Chen, H., E. Gonzales-Vigil, C.G. Wilkerson, and G.A. Howe. 2007. Stability of plant defense proteins in the gut of insect herbivores. Plant Physiol 143: 1954–1967.

    PubMed  CAS  Google Scholar 

  • Chini, A., S. Fonseca, G. Fernandez, B. Adie, J.M. Chico, O. Lorenzo, G. Garcia-Casado, I. Lopez-Vidriero, F.M. Lozano, M.R. Ponce, J.L. Micol, and R. Solano. 2007. The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448: 666–671.

    PubMed  CAS  Google Scholar 

  • Cipollini, D., S. Enright, M.B. Traw, and J. Bergelson. 2004. Salicylic acid inhibits jasmonic acid-induced resistance of Arabidopsis thaliana to spodoptera exigua. Mol Ecol 13: 1643–1653.

    PubMed  CAS  Google Scholar 

  • Conconi, A., M.J. Smerdon, G.A. Howe, and C.A. Ryan. 1996. The octadecanoid signalling pathway in plants mediates a response to ultraviolet radiation. Nature 383: 826–829.

    PubMed  CAS  Google Scholar 

  • Conrath, U., G.J. Beckers, V. Flors, P. Garcia-Agustin, G. Jakab, F. Mauch, M.A. Newman, C.M. Pieterse, B. Poinssot, M.J. Pozo, A. Pugin, U. Schaffrath, J. Ton, D. Wendehenne, L. Zimmerli, and B. Mauch-Mani. 2006. Priming: getting ready for battle. Mol Plant Microbe Interact 19: 1062–1071.

    PubMed  CAS  Google Scholar 

  • Constabel, C.P., D.R. Bergey, and C.A. Ryan. 1995. Systemin activates synthesis of wound-inducible tomato leaf polyphenol oxidase via the octadecanoid defense signaling pathway. Proc Natl Acad Sci USA 92: 407–411.

    PubMed  CAS  Google Scholar 

  • Creelman, R.A., and J.E. Mullet. 1995. Jasmonic acid distribution and action in plants: regulation during development and response to biotic and abiotic stress. Proc Natl Acad Sci USA 92: 4114–4119.

    PubMed  CAS  Google Scholar 

  • Creelman, R.A., and J.E. Mullet. 1997. Oligosaccharins, brassinolides, and jasmonates: nontraditional regulators of plant growth, development, and gene expression. Plant Cell 9: 1211–1223.

    PubMed  CAS  Google Scholar 

  • Cruz Castillo, M., C. Martinez, A. Buchala, J.P. Metraux, and J. Leon. 2004. Gene-specific involvement of beta-oxidation in wound-activated responses in Arabidopsis. Plant Physiol 135: 85–94.

    PubMed  CAS  Google Scholar 

  • De Moraes, C.M., M.C. Mescher, and J.H. Tumlinson. 2001. Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature 410: 577–580.

    PubMed  Google Scholar 

  • De Vos, M., V.R. Van Oosten, R.M. Van Poecke, J.A. Van Pelt, M.J. Pozo, M.J. Mueller, A.J. Buchala, J.P. Metraux, L.C. Van Loon, M. Dicke, and C.M. Pieterse. 2005. Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Mol Plant Microbe Interact 18: 923–937.

    PubMed  Google Scholar 

  • Delk, N.A., K.A. Johnson, N.I. Chowdhury, and J. Braam. 2005. CML24, regulated in expression by diverse stimuli, encodes a potential Ca2+ sensor that functions in responses to abscisic acid, daylength, and ion stress. Plant Physiol 139: 240–253.

    PubMed  CAS  Google Scholar 

  • Delker, C., B.K. Zolman, O. Miersch, and C. Wasternack. 2007. Jasmonate biosynthesis in Arabidopsis thaliana requires peroxisomal beta-oxidation enzymes—additional proof by properties of pex6 and aim1. Phytochemistry 68: 1642–1650.

    PubMed  CAS  Google Scholar 

  • Demole, E., E. Lederer, and D. Mercier. 1962. Isolement et dĂ©termination de la structure du jasmonate de mĂ©thyle, constituant odorant charactĂ©ristique de l’essence de jasmin. Helv Chim Acta 45: 645–685.

    Google Scholar 

  • Despres, C., C. Chubak, A. Rochon, R. Clark, T. Bethune, D. Desveaux, and P.R. Fobert. 2003. The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain/leucine zipper transcription factor TGA1. Plant Cell 15: 2181–2191.

    PubMed  CAS  Google Scholar 

  • Devoto, A., C. Ellis, A. Magusin, H.S. Chang, C. Chilcott, T. Zhu, and J.G. Turner. 2005. Expression profiling reveals COI1 to be a key regulator of genes involved in wound- and methyl jasmonate-induced secondary metabolism, defence, and hormone interactions. Plant Mol Biol 58: 497–513.

    PubMed  CAS  Google Scholar 

  • Dharmasiri, N., S. Dharmasiri, and M. Estelle. 2005. The F-box protein TIR1 is an auxin receptor. Nature 435: 441–445.

    PubMed  CAS  Google Scholar 

  • Dombrecht, B., G.P. Xue, S.J. Sprague, J.A. Kirkegaard, J.J. Ross, J.B. Reid, G.P. Fitt, N. Sewelam, P.M. Schenk, J.M. Manners, and K. Kazan. 2007. MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. Plant Cell 19: 2225–2245.

    PubMed  CAS  Google Scholar 

  • Dong, X. 2001. Genetic dissection of systemic acquired resistance. Curr Opin Plant Biol 4: 309–314.

    PubMed  CAS  Google Scholar 

  • Dong, X. 2004. NPR1, all things considered. Curr Opin Plant Biol 7: 547–552.

    PubMed  CAS  Google Scholar 

  • Eastmond, P.J., M.A. Hooks, D. Williams, P. Lange, N. Bechtold, C. Sarrobert, L. Nussaume, and I.A. Graham. 2000. Promoter trapping of a novel medium-chain acyl-CoA oxidase, which is induced transcriptionally during Arabidopsis seed germination. J Biol Chem 275: 34375–34381.

    PubMed  CAS  Google Scholar 

  • Ellinger, D., N. Stingl, I.I. Kubigsteltig, T. Bals, M. Juenger, S. Pollmann, S. Berger, D. Schuenemann, and M.J. Mueller. 2010. DONGLE and DEFECTIVE IN ANTHER DEHISCENCE1 lipases are not essential for wound- and pathogen-induced jasmonate biosynthesis: redundant lipases contribute to jasmonate formation. Plant Physiol 153: 114–127.

    PubMed  CAS  Google Scholar 

  • Ellis, C., and J.G. Turner. 2001. The Arabidopsis mutant cev1 has constitutively active jasmonate and ethylene signal pathways and enhanced resistance to pathogens. Plant Cell 13: 1025–1033.

    PubMed  CAS  Google Scholar 

  • Ellis, C., I. Karafyllidis, C. Wasternack, and J.G. Turner. 2002. The Arabidopsis mutant cev1 links cell wall signaling to jasmonate and ethylene responses. Plant Cell 14: 1557–1566.

    PubMed  CAS  Google Scholar 

  • Erb, M., J. Ton, J. Degenhardt, and T.C. Turlings. 2008. Interactions between arthropod-induced aboveground and belowground defenses in plants. Plant Physiol 146: 867–874.

    PubMed  CAS  Google Scholar 

  • Eulgem, T., P.J. Rushton, S. Robatzek, and I.E. Somssich. 2000. The WRKY superfamily of plant transcription factors. Trends Plant Sci 5: 199–206.

    PubMed  CAS  Google Scholar 

  • Falkenstein, E., B. Groth, A. Mithofer, and E.W. Weiler. 1991. Methyl jasmonate and linolenic acid are potent inducers of tendril coiling. Planta 185: 316–322.

    CAS  Google Scholar 

  • Fang, Y., M.A.L. Smith, and M.F. Pdpin. 1998. Benzyladenine restores anthocyanin pigmentation in suspension cultures of wild vaccinium pahalae. Plant Cell Tissue Org Cult 54: 113–122.

    CAS  Google Scholar 

  • Farmer, E.E., and C.A. Ryan. 1992. Octadecanoid-derived signals in plants. Trends Cell Biol 2: 236–241.

    PubMed  CAS  Google Scholar 

  • Farmer, E.E., R.R. Johnson, and C.A. Ryan. 1992. Regulation of expression of proteinase inhibitor genes by methyl jasmonate and jasmonic acid. Plant Physiol 98: 995–1002.

    PubMed  CAS  Google Scholar 

  • Felton, G.W., J.L. Bi, C.B. Summers, A.J. Mueller, and S.S. Duffey. 1994. Potential role of lipoxygenases in defense against insect herbivory. J Chem Ecol 20: 651–666.

    CAS  Google Scholar 

  • Feys, B., C.E. Benedetti, C.N. Penfold, and J.G. Turner. 1994. Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. Plant Cell 6: 751–759.

    PubMed  CAS  Google Scholar 

  • Fonseca, S., J.M. Chico, and R. Solano. 2009. The jasmonate pathway: the ligand, the receptor and the core signalling module. Curr Opin Plant Biol 12: 539–547.

    PubMed  CAS  Google Scholar 

  • Footitt, S., D. Dietrich, A. Fait, A.R. Fernie, M.J. Holdsworth, A. Baker, and F.L. Theodoulou. 2007. The COMATOSE ATP-binding cassette transporter is required for full fertility in Arabidopsis. Plant Physiol 144: 1467–1480.

    PubMed  CAS  Google Scholar 

  • Frost, C.J., H.M. Appel, J.E. Carlson, C.M. De Moraes, M.C. Mescher, and J.C. Schultz. 2007. Within-plant signalling via volatiles overcomes vascular constraints on systemic signalling and primes responses against herbivores. Ecol Lett 10: 490–498.

    PubMed  Google Scholar 

  • Glazebrook, J. 2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43: 205–227.

    PubMed  CAS  Google Scholar 

  • Glazebrook, J., and F.M. Ausubel. 1994. Isolation of phytoalexin-deficient mutants of Arabidopsis thaliana and characterization of their interactions with bacterial pathogens. Proc Natl Acad Sci USA 91: 8955–8959.

    PubMed  CAS  Google Scholar 

  • Glazebrook, J., M. Zook, F. Mert, I. Kagan, E.E. Rogers, I.R. Crute, E.B. Holub, R. Hammerschmidt, and F.M. Ausubel. 1997. Phytoalexin-deficient mutants of Arabidopsis reveal that PAD4 encodes a regulatory factor and that four PAD genes contribute to downy mildew resistance. Genetics 146: 381–392.

    PubMed  CAS  Google Scholar 

  • Green, T.R., and C.A. Ryan. 1972. Wound-induced proteinase inhibitor in plant leaves: a possible defense mechanism against insects. Science 175: 776–777.

    PubMed  CAS  Google Scholar 

  • Grubb, C.D., and S. Abel. 2006. Glucosinolate metabolism and its control. Trends Plant Sci 11: 89–100.

    PubMed  CAS  Google Scholar 

  • Halitschke, R., U. Schittko, G. Pohnert, W. Boland, and I.T. Baldwin. 2001. Molecular interactions between the specialist herbivore manduca sexta (Lepidoptera, sphingidae) and its natural host nicotiana attenuata. III. Fatty acid-amino acid conjugates in herbivore oral secretions are necessary and sufficient for herbivore-specific plant responses. Plant Physiol 125: 711–717.

    PubMed  CAS  Google Scholar 

  • Halitschke, R., K. Gase, D. Hui, D.D. Schmidt, and I.T. Baldwin. 2003. Molecular interactions between the specialist herbivore manduca sexta (Lepidoptera, sphingidae) and its natural host nicotiana attenuata. VI. Microarray analysis reveals that most herbivore-specific transcriptional changes are mediated by fatty acid-amino acid conjugates. Plant Physiol 131: 1894–1902.

    PubMed  CAS  Google Scholar 

  • Hause, B., I. Stenzel, O. Miersch, H. Maucher, R. Kramell, J. Ziegler, and C. Wasternack. 2000. Tissue-specific oxylipin signature of tomato flowers: allene oxide cyclase is highly expressed in distinct flower organs and vascular bundles. Plant J 24: 113–126.

    PubMed  CAS  Google Scholar 

  • Hayashi, M., K. Toriyama, M. Kondo, and M. Nishimura. 1998. 2,4-Dichlorophenoxybutyric acid-resistant mutants of Arabidopsis have defects in glyoxysomal fatty acid beta-oxidation. Plant Cell 10: 183–195.

    PubMed  CAS  Google Scholar 

  • Hayashi, M., K. Nito, R. Takei-Hoshi, M. Yagi, M. Kondo, A. Suenaga, T. Yamaya, and M. Nishimura. 2002. Ped3p Is a peroxisomal ATP-binding cassette transporter that might supply substrates for fatty acid beta-oxidation. Plant Cell Physiol 43: 1–11.

    PubMed  CAS  Google Scholar 

  • Heidel, A., and I.T. Baldwin. 2004. Microarray analysis of salicylic acid- and jasmonic acid-signalling in responses of nicotiana attenuata to attack by insects from multiple feeding guilds. Plant Cell Environ 2: 1362–1373.

    Google Scholar 

  • Heil, M., and J. Ton. 2008. Long-distance signalling in plant defence. Trends Plant Sci 13: 264–272.

    PubMed  CAS  Google Scholar 

  • Herms, D.A., and W.J. Mattson. 1992. The dilemma of plants: to grow or defend. Q Rev Biol 6: 283–335.

    Google Scholar 

  • Howe, G.A., and G. Jander. 2008. Plant immunity to insect herbivores. Annu Rev Plant Biol 59: 41–66.

    PubMed  CAS  Google Scholar 

  • Howe, G.A., J. Lightner, J. Browse, and C.A. Ryan. 1996. An octadecanoid pathway mutant (JL5) of tomato is compromised in signaling for defense against insect attack. Plant Cell 8: 2067–2077.

    PubMed  CAS  Google Scholar 

  • Hu, X., S. Neill, W. Cai, and Z. Tang. 2003. Hydrogen peroxide and jasmonic acid mediate oligogalacturonic acid-induced saponin accumulation in suspension-cultured cells of panax ginseng. Physiol Plant 118: 414–421.

    CAS  Google Scholar 

  • Hyun, Y., S. Choi, H.J. Hwang, J. Yu, S.J. Nam, J. Ko, J.Y. Park, Y.S. Seo, E.Y. Kim, S.B. Ryu, W.T. Kim, Y.H. Lee, H. Kang, and I. Lee. 2008. Cooperation and functional diversification of two closely related galactolipase genes for jasmonate biosynthesis. Dev Cell 14: 183–192.

    PubMed  CAS  Google Scholar 

  • Ishiguro, S., A. Kawai-Oda, J. Ueda, I. Nishida, and K. Okada. 2001. The DEFECTIVE IN ANTHER DEHISCIENCE gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis. Plant Cell 13: 2191–2209.

    PubMed  CAS  Google Scholar 

  • Jonak, C., L. Okresz, L. Bogre, and H. Hirt. 2002. Complexity, cross talk and integration of plant MAP kinase signalling. Curr Opin Plant Biol 5: 415–424.

    PubMed  CAS  Google Scholar 

  • Journot-Catalino, N., I.E. Somssich, D. Roby, and T. Kroj. 2006. The transcription factors WRKY11 and WRKY17 act as negative regulators of basal resistance in Arabidopsis thaliana. Plant Cell 18: 3289–3302.

    PubMed  CAS  Google Scholar 

  • Keinanen, M., N.J. Oldham, and I.T. Baldwin. 2001. Rapid HPLC screening of jasmonate-induced increases in tobacco alkaloids, phenolics, and diterpene glycosides in nicotiana attenuata. J Agric Food Chem 49: 3553–3558.

    PubMed  CAS  Google Scholar 

  • Kessler, A., and I.T. Baldwin. 2002. Plant responses to insect herbivory: the emerging molecular analysis. Annu Rev Plant Biol 53: 299–328.

    PubMed  CAS  Google Scholar 

  • Kessler, A., R. Halitschke, and I.T. Baldwin. 2004. Silencing the jasmonate cascade: induced plant defenses and insect populations. Science 305: 665–668.

    PubMed  CAS  Google Scholar 

  • Kloek, A.P., M.L. Verbsky, S.B. Sharma, J.E. Schoelz, J. Vogel, D.F. Klessig, and B.N. Kunkel. 2001. Resistance to pseudomonas syringae conferred by an Arabidopsis thaliana coronatine-insensitive (coi1) mutation occurs through two distinct mechanisms. Plant J 26: 509–522.

    PubMed  CAS  Google Scholar 

  • Koo, A.J., H.S. Chung, Y. Kobayashi, and G.A. Howe. 2006. Identification of a peroxisomal acyl-activating enzyme involved in the biosynthesis of jasmonic acid in Arabidopsis. J Biol Chem 281: 33511–33520.

    PubMed  CAS  Google Scholar 

  • Koornneef, A., and C.M. Pieterse. 2008. Cross talk in defense signaling. Plant Physiol 146: 839–844.

    PubMed  CAS  Google Scholar 

  • Kunkel, B.N., and D.M. Brooks. 2002. Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol 5: 325–331.

    PubMed  CAS  Google Scholar 

  • Lee, G.I., and G.A. Howe. 2003. The tomato mutant spr1 is defective in systemin perception and the production of a systemic wound signal for defense gene expression. Plant J 33: 567–576.

    PubMed  CAS  Google Scholar 

  • Lee, D., D.H. Polisensky, and J. Braam. 2005. Genome-wide identification of touch- and darkness-regulated Arabidopsis genes: a focus on calmodulin-like and XTH genes. New Phytol 165: 429–444.

    PubMed  CAS  Google Scholar 

  • Li, L., C. Li, G.I. Lee, and G.A. Howe. 2002. Distinct roles for jasmonate synthesis and action in the systemic wound response of tomato. Proc Natl Acad Sci USA 99: 6416–6421.

    PubMed  CAS  Google Scholar 

  • Li, L., Y. Zhao, B.C. McCaig, B.A. Wingerd, J. Wang, M.E. Whalon, E. Pichersky, and G.A. Howe. 2004. The tomato homolog of CORONATINE-INSENSITIVE1 is required for the maternal control of seed maturation, jasmonate-signaled defense responses, and glandular trichome development. Plant Cell 16: 126–143.

    PubMed  CAS  Google Scholar 

  • Li, C., A.L. Schilmiller, G. Liu, G.I. Lee, S. Jayanty, C. Sageman, J. Vrebalov, J.J. Giovannoni, K. Yagi, Y. Kobayashi, and G.A. Howe. 2005. Role of beta-oxidation in jasmonate biosynthesis and systemic wound signaling in tomato. Plant Cell 17: 971–986.

    PubMed  CAS  Google Scholar 

  • Liechti, R., and E.E. Farmer. 2002. The jasmonate pathway. Science 296: 1649–1650.

    PubMed  CAS  Google Scholar 

  • Lison, P., I. Rodrigo, and V. Conejero. 2006. A novel function for the cathepsin D inhibitor in tomato. Plant Physiol 142: 1329–1339.

    PubMed  CAS  Google Scholar 

  • Liu, F., W. Ni, M.E. Griffith, Z. Huang, C. Chang, W. Peng, H. Ma, and D. Xie. 2004. The ASK1 and ASK2 genes are essential for Arabidopsis early development. Plant Cell 16: 5–20.

    PubMed  CAS  Google Scholar 

  • Lorenzo, O., R. Piqueras, J.J. Sanchez-Serrano, and R. Solano. 2003. ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell 15: 165–178.

    PubMed  CAS  Google Scholar 

  • Lorenzo, O., J.M. Chico, J.J. Sanchez-Serrano, and R. Solano. 2004. JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell 16: 1938–1950.

    PubMed  CAS  Google Scholar 

  • Major, I.T., and C.P. Constabel. 2006. Molecular analysis of poplar defense against herbivory: comparison of wound- and insect elicitor-induced gene expression. New Phytol 172: 617–635.

    PubMed  CAS  Google Scholar 

  • Mao, P., M. Duan, C. Wei, and Y. Li. 2007. WRKY62 Transcription factor acts downstream of cytosolic NPR1 and negatively regulates jasmonate-responsive gene expression. Plant Cell Physiol 48: 833–842.

    PubMed  CAS  Google Scholar 

  • McConn, M., and J. Browse. 1996. The critical requirement for linolenic acid in pollen development, not photosynthesis, in an Arabidopsis mutant. Plant Cell 8: 403–416.

    PubMed  CAS  Google Scholar 

  • McCormack, E., and J. Braam. 2003. Calmodulins and related potential calcium sensors of Arabidopsis. New Phytol 159: 585–598.

    CAS  Google Scholar 

  • Mewis, I., H.M. Appel, A. Hom, R. Raina, and J.C. Schultz. 2005. Major signaling pathways modulate Arabidopsis glucosinolate accumulation and response to both phloem-feeding and chewing insects. Plant Physiol 138: 1149–1162.

    PubMed  CAS  Google Scholar 

  • Mou, Z., W. Fan, and X. Dong. 2003. Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113: 935–944.

    PubMed  CAS  Google Scholar 

  • Niki, T., I. Mitsuhara, S. Seo, N. Ohtsubo, and Y. Ohashi. 1998. Antagonistic effect of salicylic acid and jasmonic acid on the expression of pathogenesis-related (PR) protein genes in wounded mature tobacco leaves. Plant Cell Physiol 39: 500–507.

    CAS  Google Scholar 

  • O’Donnell, P.J., M.R. Truesdale, C.M. Calvert, A. Dorans, M.R. Roberts, and D.J. Bowles. 1998. A novel tomato gene that rapidly responds to wound- and pathogen-related signals. Plant J 14: 137–142.

    PubMed  Google Scholar 

  • Parbery, D.G. 1996. Trophism and the ecology of fungi associated with plants. Biol Rev 71: 473–527.

    Google Scholar 

  • Park, J.H., R. Halitschke, H.B. Kim, I.T. Baldwin, K.A. Feldmann, and R. Feyereisen. 2002. A knock-out mutation in allene oxide synthase results in male sterility and defective wound signal transduction in Arabidopsis due to a block in jasmonic acid biosynthesis. Plant J 31: 1–12.

    PubMed  Google Scholar 

  • Parthier, B. 1990. Jasmonates: hormonal regulators or stress factors in leaf senescence? J Plant Growth Regul 9: 57–63.

    CAS  Google Scholar 

  • Paschold, A., R. Halitschke, and I.T. Baldwin. 2007. Co(i)-ordinating defenses: NaCOI1 Mediates herbivore-induced resistance in nicotiana attenuata and reveals the role of herbivore movement in avoiding defenses. Plant J 51: 79–91.

    PubMed  CAS  Google Scholar 

  • Pauwels, L., K. Morreel, E. De Witte, F. Lammertyn, M. Van Montagu, W. Boerjan, D. Inze, and A. Goossens. 2008. Mapping methyl jasmonate-mediated transcriptional reprogramming of metabolism and cell cycle progression in cultured Arabidopsis cells. Proc Natl Acad Sci USA 105: 1380–1385.

    PubMed  CAS  Google Scholar 

  • Penninckx, I.A., K. Eggermont, F.R. Terras, B.P. Thomma, G.W. De Samblanx, A. Buchala, J.P. Metraux, J.M. Manners, and W.F. Broekaert. 1996. Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell 8: 2309–2323.

    PubMed  CAS  Google Scholar 

  • Penninckx, I.A., B.P. Thomma, A. Buchala, J.P. Metraux, and W.F. Broekaert. 1998. Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell 10: 2103–2113.

    PubMed  CAS  Google Scholar 

  • Petersen, M., P. Brodersen, H. Naested, E. Andreasson, U. Lindhart, B. Johansen, H.B. Nielsen, M. Lacy, M.J. Austin, J.E. Parker, S.B. Sharma, D.F. Klessig, R. Martienssen, O. Mattsson, A.B. Jensen, and J. Mundy. 2000. Arabidopsis map kinase 4 negatively regulates systemic acquired resistance. Cell 103: 1111–1120.

    PubMed  CAS  Google Scholar 

  • Pieterse, C.M., and L.C. Van Loon. 2004. NPR1: the spider in the web of induced resistance signaling pathways. Curr Opin Plant Biol 7: 456–464.

    PubMed  CAS  Google Scholar 

  • Pieterse, C.M., S.C. van Wees, J.A. van Pelt, M. Knoester, R. Laan, H. Gerrits, P.J. Weisbeek, and L.C. van Loon. 1998. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10: 1571–1580.

    PubMed  CAS  Google Scholar 

  • Purugganan, M.M., J. Braam, and S.C. Fry. 1997. The Arabidopsis TCH4 xyloglucan endotransglycosylase. Substrate specificity, pH optimum, and cold tolerance. Plant Physiol 115: 181–190.

    PubMed  CAS  Google Scholar 

  • Ralph, S.G., H. Yueh, M. Friedmann, D. Aeschliman, J.A. Zeznik, C.C. Nelson, Y.S. Butterfield, R. Kirkpatrick, J. Liu, S.J. Jones, M.A. Marra, C.J. Douglas, K. Ritland, and J. Bohlmann. 2006. Conifer defence against insects: microarray gene expression profiling of Sitka spruce (picea sitchensis) induced by mechanical wounding or feeding by spruce budworms (choristoneura occidentalis) or white pine weevils (pissodes strobi) reveals large-scale changes of the host transcriptome. Plant Cell Environ 29: 1545–1570.

    PubMed  Google Scholar 

  • Ren, C., J. Pan, W. Peng, P. Genschik, L. Hobbie, H. Hellmann, M. Estelle, B. Gao, J. Peng, C. Sun, and D. Xie. 2005. Point mutations in Arabidopsis Cullin1 reveal its essential role in jasmonate response. Plant J 42: 514–524.

    PubMed  CAS  Google Scholar 

  • Reymond, P., H. Weber, M. Damond, and E.E. Farmer. 2000. Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell 12: 707–720.

    PubMed  CAS  Google Scholar 

  • Reymond, P., N. Bodenhausen, R.M. Van Poecke, V. Krishnamurthy, M. Dicke, and E.E. Farmer. 2004. A conserved transcript pattern in response to a specialist and a generalist herbivore. Plant Cell 16: 3132–3147.

    PubMed  CAS  Google Scholar 

  • Richmond, T.A., and A.B. Bleecker. 1999. A defect in beta-oxidation causes abnormal inflorescence development in Arabidopsis. Plant Cell 11: 1911–1924.

    PubMed  CAS  Google Scholar 

  • Rojo, E., J. Leon, and J.J. Sanchez-Serrano. 1999. Cross-talk between wound signalling pathways determines local versus systemic gene expression in Arabidopsis thaliana. Plant J 20: 135–142.

    PubMed  CAS  Google Scholar 

  • Rojo, E., R. Solano, and J.J. Sanchez-Serrano. 2003. Interactions between signaling compounds involved in plant defense. J Plant Growth Regul 22: 82–98.

    CAS  Google Scholar 

  • Rowe, H.C., J.W. Walley, J. Corwin, E.K. Chan, K. Dehesh, and D.J. Kliebenstein. 2010. Deficiencies in jasmonate-mediated plant defense reveal quantitative variation in botrytis cinerea pathogenesis. PLoS Pathog 6: e1000861.

    PubMed  Google Scholar 

  • Ryan, C.A. 1990. Protease inhibitors in plants: genes for improving defenses against insects and pathogens. Annu Rev Phytopathol 28: 425–449.

    CAS  Google Scholar 

  • Sanchez-Serrano, J., R. Schmidt, J. Schell, and L. Willmitzer. 1986. Nucleotide sequence of proteinase inhibitor II encoding cDNA of potato (solanum fuberosum) and its mode of expression. MoI Gen Genet 203: 15–20.

    CAS  Google Scholar 

  • Sanders, P.M., P.Y. Lee, C. Biesgen, J.D. Boone, T.P. Beals, E.W. Weiler, and R.B. Goldberg. 2000. The Arabidopsis DELAYED DEHISCENCE1 gene encodes an enzyme in the jasmonic acid synthesis pathway. Plant Cell 12: 1041–1061.

    PubMed  CAS  Google Scholar 

  • Schaller, F., C. Biesgen, C. Mussig, T. Altmann, and E.W. Weiler. 2000. 12-Oxophytodienoate reductase 3 (OPR3) is the isoenzyme involved in jasmonate biosynthesis. Planta 210: 979–984.

    PubMed  CAS  Google Scholar 

  • Schilmiller, A.L., A.J. Koo, and G.A. Howe. 2007. Functional diversification of acyl-coenzyme a oxidases in jasmonic acid biosynthesis and action. Plant Physiol 143: 812–824.

    PubMed  CAS  Google Scholar 

  • Schmelz, E.A., M.J. Carroll, S. LeClere, S.M. Phipps, J. Meredith, P.S. Chourey, H.T. Alborn, and P.E. Teal. 2006. Fragments of ATP synthase mediate plant perception of insect attack. Proc Natl Acad Sci USA 103: 8894–8899.

    PubMed  CAS  Google Scholar 

  • Seo, J.S., J. Joo, M.J. Kim, Y.K. Kim, B.H. Nahm, S.I. Song, J.J. Cheong, J.S. Lee, J.K. Kim, and Y.D. Choi. 2011. OsbHLH148, a basic helix-loop-helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice. Plant J 65: 907–921.

    PubMed  CAS  Google Scholar 

  • Sheard, L.B., X. Tan, H. Mao, J. Withers, G. Ben-Nissan, T.R. Hinds, Y. Kobayashi, F.F. Hsu, M. Sharon, J. Browse, S.Y. He, J. Rizo, G.A. Howe, and N. Zheng. 2010. Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468: 400–405.

    PubMed  CAS  Google Scholar 

  • Shoji, T., Y. Yamada, and T. Hashimoto. 2000. Jasmonate induction of putrescine N-methyltransferase genes in the root of nicotiana sylvestris. Plant Cell Physiol 41: 831–839.

    PubMed  CAS  Google Scholar 

  • Sistrunk, M.L., D.M. Antosiewicz, M.M. Purugganan, and J. Braam. 1994. Arabidopsis TCH3 encodes a novel Ca2+ binding protein and shows environmentally induced and tissue-specific regulation. Plant Cell 6: 1553–1565.

    PubMed  CAS  Google Scholar 

  • Song, S., T. Qi, H. Huang, Q. Ren, D. Wu, C. Chang, W. Peng, Y. Liu, J. Peng, and D. Xie. 2011. The jasmonate-ZIM domain proteins interact with the R2R3-MYB transcription factors MYB21 and MYB24 to affect jasmonate-regulated stamen development in Arabidopsis. Plant Cell 23: 1000–1013.

    PubMed  CAS  Google Scholar 

  • Spoel, S.H., A. Koornneef, S.M. Claessens, J.P. Korzelius, J.A. Van Pelt, M.J. Mueller, A.J. Buchala, J.P. Metraux, R. Brown, K. Kazan, L.C. Van Loon, X. Dong, and C.M. Pieterse. 2003. NPR1 Modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15: 760–770.

    PubMed  CAS  Google Scholar 

  • Staswick, P.E., and I. Tiryaki. 2004. The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 16: 2117–2127.

    PubMed  CAS  Google Scholar 

  • Staswick, P.E., W. Su, and S.H. Howell. 1992. Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant. Proc Natl Acad Sci USA 89: 6837–6840.

    PubMed  CAS  Google Scholar 

  • Staswick, P.E., G.Y. Yuen, and C.C. Lehman. 1998. Jasmonate signaling mutants of Arabidopsis are susceptible to the soil fungus pythium irregulare. Plant J 15: 747–754.

    PubMed  CAS  Google Scholar 

  • Staswick, P.E., I. Tiryaki, and M.L. Rowe. 2002. Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation. Plant Cell 14: 1405–1415.

    PubMed  CAS  Google Scholar 

  • Stelmach, B.A., A. Muller, P. Hennig, D. Laudert, L. Andert, and E.W. Weiler. 1998. Quantitation of the octadecanoid 12-oxo-phytodienoic acid, a signalling compound in plant mechanotransduction. Phytochemistry 47: 539–546.

    PubMed  CAS  Google Scholar 

  • Stintzi, A., and J. Browse. 2000. The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. Proc Natl Acad Sci USA 97: 10625–10630.

    PubMed  CAS  Google Scholar 

  • Stintzi, A., H. Weber, P. Reymond, J. Browse, and E.E. Farmer. 2001. Plant defense in the absence of jasmonic acid: the role of cyclopentenones. Proc Natl Acad Sci USA 98: 12837–12842.

    PubMed  CAS  Google Scholar 

  • Strassner, J., F. Schaller, U.B. Frick, G.A. Howe, E.W. Weiler, N. Amrhein, P. Macheroux, and A. Schaller. 2002. Characterization and cDNA-microarray expression analysis of 12-oxophytodienoate reductases reveals differential roles for octadecanoid biosynthesis in the local versus the systemic wound response. Plant J 32: 585–601.

    PubMed  CAS  Google Scholar 

  • Suza, W.P., and P.E. Staswick. 2008. The role of JAR1 in jasmonoyl-L: isoleucine production during Arabidopsis wound response. Planta 227: 1221–1232.

    PubMed  CAS  Google Scholar 

  • Swiatek, A., M. Lenjou, D. Van Bockstaele, D. Inze, and H. Van Onckelen. 2002. Differential effect of jasmonic acid and abscisic acid on cell cycle progression in tobacco BY-2 cells. Plant Physiol 128: 201–211.

    PubMed  CAS  Google Scholar 

  • Thaler, J.S., A.L. Fidantsef, and R.M. Bostock. 2002. Antagonism between jasmonate- and salicylate-mediated induced plant resistance: effects of concentration and timing of elicitation on defense-related proteins, herbivore, and pathogen performance in tomato. J Chem Ecol 28: 1131–1159.

    PubMed  CAS  Google Scholar 

  • Thines, B., L. Katsir, M. Melotto, Y. Niu, A. Mandaokar, G. Liu, K. Nomura, S.Y. He, G.A. Howe, and J. Browse. 2007. JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature 448: 661–665.

    PubMed  CAS  Google Scholar 

  • Thomma, B.P., K. Eggermont, I.A. Penninckx, B. Mauch-Mani, R. Vogelsang, B.P. Cammue, and W.F. Broekaert. 1998. Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc Natl Acad Sci USA 95: 15107–15111.

    PubMed  CAS  Google Scholar 

  • Thomma, B.P., I.A. Penninckx, W.F. Broekaert, and B.P. Cammue. 2001. The complexity of disease signaling in Arabidopsis. Curr Opin Immunol 13: 63–68.

    PubMed  CAS  Google Scholar 

  • Thorpe, M.R., A.P. Ferrieri, M.M. Herth, and R.A. Ferrieri. 2007. 11C-imaging: methyl jasmonate moves in both phloem and xylem, promotes transport of jasmonate, and of photoassimilate even after proton transport is decoupled. Planta 226: 541–551.

    PubMed  CAS  Google Scholar 

  • Ton, J., M. D'Alessandro, V. Jourdie, G. Jakab, D. Karlen, M. Held, B. Mauch-Mani, and T.C. Turlings. 2007. Priming by airborne signals boosts direct and indirect resistance in maize. Plant J 49: 16–26.

    PubMed  CAS  Google Scholar 

  • Traw, M.B., J. Kim, S. Enright, D.F. Cipollini, and J. Bergelson. 2003. Negative cross-talk between salicylate- and jasmonate-mediated pathways in the wassilewskija ecotype of Arabidopsis thaliana. Mol Ecol 12: 1125–1135.

    PubMed  CAS  Google Scholar 

  • Tsuji, J., E.P. Jackson, D.A. Gage, R. Hammerschmidt, and S.C. Somerville. 1992. Phytoalexin accumulation in Arabidopsis thaliana during the hypersensitive reaction to pseudomonas syringae pv syringae. Plant Physiol 98: 1304–1309.

    PubMed  CAS  Google Scholar 

  • van Wees, S.C., M. Luijendijk, I. Smoorenburg, L.C. van Loon, and C.M. Pieterse. 1999. Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis is not associated with a direct effect on expression of known defense-related genes but stimulates the expression of the jasmonate-inducible gene atvsp upon challenge. Plant Mol Biol 41: 537–549.

    PubMed  Google Scholar 

  • Vick, B.A., and D.C. Zimmerman. 1983. The biosynthesis of jasmonic acid: a physiological role for plant lipoxygenase. Biochem Biophys Res Commun 111: 470–477.

    PubMed  CAS  Google Scholar 

  • Vijayan, P., J. Shockey, C.A. Levesque, R.J. Cook, and J. Browse. 1998. A role for jasmonate in pathogen defense of Arabidopsis. Proc Natl Acad Sci USA 95: 7209–7214.

    PubMed  CAS  Google Scholar 

  • Vlot, A.C., D.F. Klessig, and S.W. Park. 2008. Systemic acquired resistance: the elusive signal(s). Curr Opin Plant Biol 11: 436–442.

    PubMed  CAS  Google Scholar 

  • von Malek, B., E. van der Graaff, K. Schneitz, and B. Keller. 2002. The Arabidopsis male-sterile mutant dde2-2 is defective in the ALLENE OXIDE SYNTHASE gene encoding one of the key enzymes of the jasmonic acid biosynthesis pathway. Planta 216: 187–192.

    Google Scholar 

  • Wang Y, Wang B, Gilroy S, Chehab EW, Braam J (2011) CML24 is involved in root mechanoresponses and cortical microtubule orientation in Arabidopsis. J Plant Growth Regul. doi: 10.1007/s00344-011-9209-9.

    Google Scholar 

  • Wasternack, C. 2007. Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100: 681–697.

    PubMed  CAS  Google Scholar 

  • Weiler, E.W., T. Albrecht, B. Groth, Z.Q. Xia, M. Luxem, H. Lib, L. Andert, and P. Spengler. 1993. Evidence for the involvement of jamonates and their octadecanoid precursors in the tendril coiling response of bryonia dioica. Phytochemistry 32: 591–600.

    CAS  Google Scholar 

  • Xie, D.X., B.F. Feys, S. James, M. Nieto-Rostro, and J.G. Turner. 1998. COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280: 1091–1094.

    PubMed  CAS  Google Scholar 

  • Xu, Y., P. Chang, D. Liu, M.L. Narasimhan, K.G. Raghothama, P.M. Hasegawa, and R.A. Bressan. 1994. Plant defense genes are synergistically induced by ethylene and methyl jasmonate. Plant Cell 6: 1077–1085.

    PubMed  CAS  Google Scholar 

  • Xu, W., M.M. Purugganan, D.H. Polisensky, D.M. Antosiewicz, S.C. Fry, and J. Braam. 1995. Arabidopsis TCH4, regulated by hormones and the environment, encodes a xyloglucan endotransglycosylase. Plant Cell 7: 1555–1567.

    PubMed  CAS  Google Scholar 

  • Xu, L., F. Liu, E. Lechner, P. Genschik, W.L. Crosby, H. Ma, W. Peng, D. Huang, and D. Xie. 2002. The SCF(COI1) ubiquitin-ligase complexes are required for jasmonate response in Arabidopsis. Plant Cell 14: 1919–1935.

    PubMed  CAS  Google Scholar 

  • Yan, Y., S. Stolz, A. Chetelat, P. Reymond, M. Pagni, L. Dubugnon, and E.E. Farmer. 2007. A downstream mediator in the growth repression limb of the jasmonate pathway. Plant Cell 19: 2470–2483.

    PubMed  CAS  Google Scholar 

  • Zarate, S.I., L.A. Kempema, and L.L. Walling. 2007. Silverleaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses. Plant Physiol 143: 866–875.

    PubMed  CAS  Google Scholar 

  • Zavala, J.A., A.G. Patankar, K. Gase, D. Hui, and I.T. Baldwin. 2004. Manipulation of endogenous trypsin proteinase inhibitor production in nicotiana attenuata demonstrates their function as antiherbivore defenses. Plant Physiol 134: 1181–1190.

    PubMed  CAS  Google Scholar 

  • Zhang, Z., and I.T. Baldwin. 1997. Transporter of [2-C-14]jasmonic acid from leaves to roots mimics wound-induced changes in endogenous jasmonic acid pools in nicotiana sylvestris. Planta 203: 436–441.

    CAS  Google Scholar 

  • Zhang, Y., and J.G. Turner. 2008. Wound-induced endogenous jasmonates stunt plant growth by inhibiting mitosis. PLoS One 3: e3699.

    PubMed  Google Scholar 

  • Zhang, L., and D. Xing. 2008. Methyl jasmonate induces production of reactive oxygen species and alterations in mitochondrial dynamics that precede photosynthetic dysfunction and subsequent cell death. Plant Cell Physiol 49: 1092–1111.

    PubMed  CAS  Google Scholar 

  • Ziegler, J., I. Stenzel, B. Hause, H. Maucher, M. Hamberg, R. Grimm, M. Ganal, and C. Wasternack. 2000. Molecular cloning of allene oxide cyclase. The enzyme establishing the stereochemistry of octadecanoids and jasmonates. J Biol Chem 275: 19132–19138.

    PubMed  CAS  Google Scholar 

  • Zolman, B.K., I.D. Silva, and B. Bartel. 2001. The Arabidopsis pxa1 mutant is defective in an ATP-binding cassette transporter-like protein required for peroxisomal fatty acid beta-oxidation. Plant Physiol 127: 1266–1278.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Research in our lab related to this topic is based upon work supported by the National Science Foundation under Grant No. MCB 0817976 to JB

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Wassim Chehab .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chehab, E.W., Braam, J. (2012). Jasmonates in Plant Defense Responses. In: Witzany, G., Baluška, F. (eds) Biocommunication of Plants. Signaling and Communication in Plants, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23524-5_5

Download citation

Publish with us

Policies and ethics