Skip to main content

Intermediate Flow Field Filtering in Energy Based Optic Flow Computations

  • Conference paper
Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2011)

Abstract

The Euler-Lagrange framework and splitting based methods are among the most popular approaches to solve variational optic flow problems. These methods are commonly embedded in a coarse-to-fine strategy to be able to handle large displacements. While the use of a denoising filter inbetween the warping is an important tool for splitting based approaches, such a practice is rather uncommon for the Euler-Lagrange method. The question arises, why there is this surprising difference in optic flow methods. In previous works it has also been stated that the use of such a filtering leads to a modification of the underlying energy functional, thus, there seems to be a difference in the energies that are actually minimised depending on the chosen algorithmic approach.

The goal of this paper is to address these fundamental issues. By a detailed numerical study we show in which way a filtering affects the evolution of the energy for the above mentioned frameworks. Doing so, we not only give many new insights on the use of filtering steps, we also bridge an important methodical gap between the two commonly used implementation approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artificial Intelligence 17, 185–203 (1981)

    Article  Google Scholar 

  2. Black, M.J., Anandan, P.: The robust estimation of multiple motions: parametric and piecewise smooth flow fields. Computer Vision and Image Understanding 63, 75–104 (1996)

    Article  Google Scholar 

  3. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. Journal of Mathematical Imaging and Vision 40, 120–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Mémin, E., Pérez, P.: Hierarchical estimation and segementation of dense motion fields. International Journal of Computer Vision 46, 129–155 (2002)

    Article  MATH  Google Scholar 

  6. Nir, T., Bruckstein, A.M., Kimmel, R.: Over-parametrized variational optical flow. International Journal of Computer Vision 76, 205–216 (2008)

    Article  Google Scholar 

  7. Wedel, A., Cremers, D., Pock, T., Bischof, H.: Structure- and motion-adaptive regularization for high accuracy optic flow. In: Proc. 2009 IEEE International Conference on Computer Vision. IEEE Computer Society Press, Kyoto (2009)

    Google Scholar 

  8. Werlberger, M., Pock, T., Bischof, H.: Motion estimation with non-local total variation regularization. In: Proc. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE Computer Society Press, San Francisco (2010)

    Google Scholar 

  9. Weickert, J., Schnörr, C.: A theoretical framework for convex regularizers in PDE-based computation of image motion. International Journal of Computer Vision 45, 245–264 (2001)

    Article  MATH  Google Scholar 

  10. Xu, L., Jia, J., Matsushita, Y.: Motion detail preserving optical flow estimation. In: Proc. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE Computer Society Press, San Francisco (2010)

    Google Scholar 

  11. Zimmer, H., Bruhn, A., Weickert, J., Valgaerts, L., Salgado, A., Rosenhahn, B., Seidel, H.-P.: Complementary optic flow. In: Cremers, D., Boykov, Y., Blake, A., Schmidt, F.R. (eds.) EMMCVPR 2009. LNCS, vol. 5681, pp. 207–220. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  12. Goldluecke, B., Cremers, D.: Convex relaxation for multilabel problems with product label spaces. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6315, pp. 225–238. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  13. Bruhn, A., Weickert, J., Kohlberger, T., Schnörr, C.: A multigrid platform for real-time motion computation with discontinuity-preserving variational methods. International Journal of Computer Vision 70, 257–277 (2006)

    Article  Google Scholar 

  14. Gwosdek, P., Zimmer, H., Grewenig, S., Bruhn, A., Weickert, J.: A highly efficient GPU implementation for variational optic flow based on the Euler-Lagrange framework. In: Proc. 2010 ECCV Workshop on Computer Vision with GPUs, Heraklion, Greece (September 2010) accepted

    Google Scholar 

  15. Zach, C., Pock, T., Bischof, H.: A duality based approach for realtime TV- L1 optical flow. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 214–223. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  16. Sun, D., Roth, S., Black, M.J.: Secrets of optical flow estimation and their principles. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2432–2439. IEEE, Los Alamitos (2010)

    Chapter  Google Scholar 

  17. Wedel, A., Pock, T., Zach, C., Bischof, H., Cremers, D.: An improved algorithm for TV-L1 optical flow. In: Cremers, D., Rosenhahn, B., Yuille, A.L., Schmidt, F.R. (eds.) Statistical and Geometrical Approaches to Visual Motion Analysis. LNCS, vol. 5604, pp. 23–45. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  18. Zimmer, H., Bruhn, A., Weickert, J.: Optic flow in harmony (2011) to appear in International Journal of Computer Vision

    Google Scholar 

  19. Saad, Y.: Iterative methods for sparse linear systems, 2nd edn. SIAM, Philadelphia (2000)

    Google Scholar 

  20. Welk, M., Breuß, M., Vogel, O.: Morphological amoebas are self-snakes. Journal of Mathematical Imaging and Vision 39, 87–99 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, Y., Yang, J., Yin, W., Zhang, Y.: A new alternating minimization algorithm for total variation image reconstruction. SIAM Journal on Imaging Sciences 1, 248–272 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Goldstein, T., Osher, S.: The split bregman method for L 1-regularized problems. SIAM Journal on Imaging Sciences 2, 323–343 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang, X., Burger, M., Osher, S.: A unified primal-dual algorithm framework based on Bregman iteration. Journal of Scientific Computing 46, 20–46 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Esser, E., Zhang, X., Chan, T.F.: A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science. SIAM Journal on Imaging Sciences 3, 1015–1046 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Arrow, K.J., Hurwicz, L., Uzawa, H.: Studies in linear and non-linear programming. Stanford University Press, Stanford (1958)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hoeltgen, L., Setzer, S., Breuß, M. (2011). Intermediate Flow Field Filtering in Energy Based Optic Flow Computations. In: Boykov, Y., Kahl, F., Lempitsky, V., Schmidt, F.R. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2011. Lecture Notes in Computer Science, vol 6819. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23094-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23094-3_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23093-6

  • Online ISBN: 978-3-642-23094-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics