Skip to main content

Secretion in the Diatoms

  • Chapter
  • First Online:
Secretions and Exudates in Biological Systems

Part of the book series: Signaling and Communication in Plants ((SIGCOMM,volume 12))

Abstract

Diatoms, a class of heterokont algae, are among the most important primary producers. They may live attached to the ground as part of the benthos or buoyant in the oceans, in brackish water and in freshwater habitats. Their ability to stay in the water column as well as their propensity to adhere to structures is a result of secretion, even locomotary activity of pennate diatoms is a consequence of secretion. Diatoms make a cell wall of glass-like silicate. This feature, which sets diatoms apart from most other algae, also entails secretory activity. Secretion in diatoms has been studied by biochemical and immunological means, by histochemistry, light and electron microscopy and by physical methods. Recently, the genomes of two diatom species, one of the order Centrales and the other of the order Pennales, have been sequenced and transformation techniques have become available for the establishment of transgenic lines in some species. This has given diatom research an additional push forward, so that not surprisingly, tremendous progress has been made, particularly in the field of silica polycondensation and frustule morphogenesis. In trying to bring together classical biochemical, cell biological and structural work with modern molecular studies, the role of secretory processes in the diatoms is illuminated with particular emphasis on cell wall morphogenesis and locomotion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arce FT, Avci R, Beech IB, Cooksey KE, Wigglesworth-Cooksey B (2004) A live bioprobe for studying diatom-surface interactions. Biophys J 87:4284–4297

    Article  PubMed  CAS  Google Scholar 

  • Azam F (1974) Silicic-acid uptake in diatoms studied with [68Ge] Germanium acid as tracer. Planta 121:205–212

    Article  CAS  Google Scholar 

  • Baïet B, Burel C, Saint-Jean B, Louvet R, Menu-Bouaouiche L, Kiefer-Meyer M-C, Mathieu-Rivet E, Lefebvre T, Castel H, Carlier A, Cadoret J-P, Lerouge P, Bardor M (2011) N-glycans of Phaeodactylum tricornutum diatom and functional characterization of its N-acetylglucosaminyltransferase I enzyme. J Biol Chem 286:6152–6164

    Article  PubMed  Google Scholar 

  • Beattie A, Percival E, Hirst EL (1961) Studies on metabolism of Chrysophyceae: comparative structural investigations on leucosin (Chrysolaminarin) separated from diatoms and laminarin from brown algae. Biochem J 79:531–537

    PubMed  CAS  Google Scholar 

  • Bentley K, Cox EJ, Bentley PJ (2005) Nature’s Batik: a computer evolution model of diatom valve morphogenesis. J Nanosci Nanotechnol 5:25–34

    Article  PubMed  CAS  Google Scholar 

  • Blackwell J, Parker KD, Rudall KM (1967) Chitin fibres of the diatoms Thalassiosira fluviatilis and Cyclotella cryptica. J Mol Biol 28:383–385

    Article  PubMed  CAS  Google Scholar 

  • Bruckner CG, Bahulikar R, Rahalkar M, Schink B, Kroth PG (2008) Bacteria associated with benthic diatoms from lake Constance: phylogeny and influences on diatom growth and secretion of extracellular polymeric substances. Appl Environ Microbiol 74:7740–7749

    Article  PubMed  CAS  Google Scholar 

  • Bruckner CG, Rehm C, Grossart HP, Kroth PG (2011) Growth and release of extracellular organic compounds by benthic diatoms depend on interactions with bacteria. Environ Microbiol 13:1052–1063. doi:10.1111/j.1462-2920.2010.02411.x

    Article  PubMed  CAS  Google Scholar 

  • Brunner E, Richthammer P, Ehrlich H, Paasch S, Simon P, Ueberlein S, van Pée KH (2009) Chitin-based organic networks: an integral part of cell wall biosilica in the diatom Thalassiosira pseudonana. Angew Chem Int Ed 48:9724–9727

    Article  CAS  Google Scholar 

  • Bowler C, De Martino A, Falciatore A (2010) Diatom cell division in an environmental context. Curr Opin Plant Biol 13:623–630

    Article  PubMed  CAS  Google Scholar 

  • Chiovitti A, Molinao P, Crawford SA, Teng R, Spurck T, Wetherbee R (2004) The glucans extracted with warm water from diatoms are mainly derived from intracellular chrysolaminaran and not extracellular polysaccharides. Eur J Phycol 39:117–128

    Article  CAS  Google Scholar 

  • Chiovitti A, Heraud P, Dugdale TM, Hodson OM, Curtain RCA, Dagastine RR, Wood BR, Wetherbee R (2008) Divalent cations stabilize the aggregation of sulfated glycoproteins in the adhesive nanofibers of the biofouling diatom Toxarium undulatum. Soft Matter 4:811–820

    Article  CAS  Google Scholar 

  • Cohn SA, Nash J, Pickett-Heaps JD (1989) The effect of drugs on diatom valve morphogenesis. Protoplasma 149:130–143

    Article  Google Scholar 

  • Cooksey KE, Wigglesworth-Cooksey B (1995) Adhesion of bacteria and diatoms to surfaces in the sea: a review. Aquat Microb Ecol 9:87–96

    Article  Google Scholar 

  • Coradin T, Lopez PJ, Gautier C, Livage J (2004) From biogenic to biomimetic silica. CR Palevol 3:443–452

    Article  Google Scholar 

  • Crawford SA, Higgins MJ, Mulvaney P, Whetherbee R (2001) Nanostructure of the diatom frustule as revealed by atomic force and scanning electron microscopy. J Phycol 37:543–554

    Article  Google Scholar 

  • Davis AK, Hildebrand M, Palenik B (2005) A stress-induced protein associated with the girdle band region of the diatom Thalassiosira pseudonana (Bacillariophyta). J Phycol 41:577–589

    Article  CAS  Google Scholar 

  • De Brouwer JF, Wolfstein K, Ruddy GK, Jones TE, Stal LJ (2005) Biogenic stabilization of intertidal sediments: the importance of extracellular polymeric substances produced by benthic diatoms. Microb Ecol 49:501–512

    Article  PubMed  CAS  Google Scholar 

  • DeMaster DJ (2001) Encyclopedia of ocean sciences, vol 3, 1st edn. Elsevier Ltd, London, pp 1659–1667

    Book  Google Scholar 

  • Drum RW, Pankratz HS (1964) Post mitotic fine structure of Gomphonema parvulum. J Ultrastr Res 10:217–223

    Article  CAS  Google Scholar 

  • Dugdale TM, Dagastine R, Chiovitti A, Mulvaney P, Wetherbee R (2005) Single adhesive nanofibers from a live diatom have the signature fingerprint of modular proteins. Biophys J 89:4252–4260

    Article  PubMed  CAS  Google Scholar 

  • Dugdale TM, Willis A, Wetherbee R (2006) Adhesive modular proteins occur in the extracellular mucilage of the motile, pennate diatom Phaeodactylum tricornutum. Biophys J 90:L58–60

    Article  PubMed  CAS  Google Scholar 

  • Durkin CA, Mock T, Armbrust EV (2009) Chitin in diatoms and its association with the cell wall. Eukaryot Cell 8:1038–1050

    Article  PubMed  CAS  Google Scholar 

  • Edgar LA (1983) Mucilage secretions of moving diatoms. Protoplasma 118:44–48

    Article  Google Scholar 

  • Edgar LA, Pickett-Heaps JD (1982) Ultrastructural localization of polysaccharides in the motile diatom Navicula cuspidata. Protoplasma 113:10–22

    Article  CAS  Google Scholar 

  • Edgar LA, Pickett-Heaps JD (1984) Diatom locomotion. Prog Phycol Res 3:49–88

    Google Scholar 

  • Garcia AP, Buehler MJ (2010) Bioinspired nanoporous silicon provides great toughness at great deformability. Comput Mat Sci 48:303–309

    Article  CAS  Google Scholar 

  • Gebeshuber IC, Kindt JH, Thompson JB, Del Amo Y, Stachelberger H, Brzezinski MA, Stucky GD, Morse DE, Hansma PK (2003) Atomic force microscopy study of living diatoms in ambient conditions. J Microsc 212:292–299

    Article  PubMed  CAS  Google Scholar 

  • Gordon R, Parkinson J (2005) Potential roles for diatomists in nanotechnology. J Nanosci Nanotechnol 5:35–40

    Article  PubMed  CAS  Google Scholar 

  • Hamm CE, Merkel R, Springer O, Jurkojc P, Maler C, Pretchel K, Smetacek V (2003) Architecture and material properties of diatom shells provide effective mechanical protection. Nature 421:841–843

    Article  PubMed  CAS  Google Scholar 

  • Heintzelman MB, Enriquez ME (2010) Myosin diversity in the diatom Phaeodactylum tricornutum. Cytoskeleton 67:142–151

    PubMed  CAS  Google Scholar 

  • Herth W (1978) A special chitin-fibril-synthesizing apparatus in the centric diatom Cyclotella. Naturwissenschaften 65:260–261

    Article  CAS  Google Scholar 

  • Higgins MJ, Crawford SA, Mulvaney P, Wetherbee R (2002) Characterization of the adhesive mucilages secreted by live diatom cells using atomic force microscopy. Protist 153:25–38

    Article  PubMed  Google Scholar 

  • Hoagland KD, Rosowski JR, Gretz MR, Roemer SC (1993) Diatom extracellular polymeric substances: function, fine structure, chemistry, and physiology. J Phycol 29:537–566

    Article  CAS  Google Scholar 

  • Horiuchi H, Fujiwara M, Yamashita S, Ohta A, Takagi M (1999) Proliferation of intrahyphal hyphae caused by disruption of csmA, which encodes a class V chitin synthase with a myosin motor-like domain in Aspergillus nidulans. J Bacteriol 181:3721–3729

    PubMed  CAS  Google Scholar 

  • Houpt PM (1994) Marine tube-dwelling diatoms and their occurrence in the Netherlands. Aquatic Ecol 28:77–84

    Google Scholar 

  • Krembs C, Eicken H, Deming JW (2010) Exopolymer alteration of physical properties of sea ice and implications for ice habitability and biogeochemistry in a warmer Arctic. Proc Natl Acad Sci USA 108:3653–3658

    Article  Google Scholar 

  • Kröger N, Lehmann G, Rachel R, Sumper M (1997) Characterization of a 200-kDa diatom protein that is specifically associated with a silica-based substructure of the cell wall. Eur J Biochem 250:99–105

    Article  PubMed  Google Scholar 

  • Kröger N, Deutzmann R, Sumper M (1999) Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science 286:1129–1132

    Article  PubMed  Google Scholar 

  • Kröger N, Wetherbee R (2000) Pleuralins are involved in theca differentiation in the diatom Cylindrotheca fusiformis. Protist 151:263–273

    Article  PubMed  Google Scholar 

  • Kröger N, Poulsen N (2008) Diatoms - from cell wall biogenesis to nanotechnology. Annu Rev Genet 42:83–107

    Article  PubMed  Google Scholar 

  • Leflaive J, Ten-Hage L (2009) Chemical interactions in diatoms: role of polyunsaturated aldehydes and precursors. New Phytol 184:794–805

    Article  PubMed  CAS  Google Scholar 

  • Lewin J (1966) Silicon metabolism in diatoms. V. Germanium dioxide, a specific inhibitor of diatom growth. Phycologia 6:1–12

    Article  CAS  Google Scholar 

  • Li C-W, Volcani BE (1985) Studies on the biochemistry and fine structure of silica shell formation in diatoms VIII. Morphogenesis of the cell wall in a centric diatom, Ditylum brightwelli. Protoplasma 124:10–29

    Article  Google Scholar 

  • Lind JL, Heimann K, Miller EA, van Vliet C, Hoogenradd NJ, Wetherbee R (1997) Substratum adhesion and gliding in a diatom are mediated by extracellular proteoglycans. Planta 203:213–221

    Article  PubMed  CAS  Google Scholar 

  • McLachlan J, McInnes AG, Falk M (1965) Studies on chitan (chitinpoly-n-acetylglucosamine) fibers of diatom Thalassiosira fluviatilis Hustedt. 1. Production and isolation of chitan fibers. Can J Bot 43:707–713

    Article  CAS  Google Scholar 

  • Menzel D, Vugrek O (1997) Muskelproteine in Pflanzen. Biol unserer Zeit 27:195–203

    Article  CAS  Google Scholar 

  • Molino PJ, Wetherbee R (2008) The biology of biofouling diatoms and their role in the development of microbial slimes. Biofouling 24:365–379

    Article  PubMed  CAS  Google Scholar 

  • Parkinson J, Brechet Y, Gordon R (1999) Centric diatom morphogenesis: a model based on a DLA algorithm. Investigating the potential role of microtubules. Biochim Biophys Acta 1452:89–102

    Article  PubMed  CAS  Google Scholar 

  • Pickett-Heaps JD (1983) Valve morphogenesis and the microtubule enter in three species of the Diatom Nitzschia. J Phycol 19:269–281

    Article  Google Scholar 

  • Pickett-Heaps JD, Schmid AM, Edgar L (1990) The cell biology of diatom valve formation. Prog Phycol Res 7:1–168

    CAS  Google Scholar 

  • Pickett-Heaps JD, Hill DRA, Blaze KL (1991) Active gliding motility in the araphid marine diatom, Ardissonea (formerly Synedra) crystallina. J Phycol 27:718–725

    Article  Google Scholar 

  • Pickett-Heaps JD, Carpentr J, Koutoulis A (1994) Valve and seta (spine) morphogenesis in the centric ditom Chaetoceros peruvianus Brightwell. Protoplasma 181:269–282

    Article  Google Scholar 

  • Pickett-Heaps JD, Spurck T, Wetherbee R, Cohn S (2003) Diatoms: life in glass houses. Cytographics. http://www.cytographics.com

  • Pollock FM, Pickett-Heaps JD (2005) Spatial determinants in morphogenesis: recovery from plasmolysis in the diatom Ditylum. Cell Motil Cytoskeleton 60:71–82

    Article  PubMed  Google Scholar 

  • Pondaven P, Gallinari M, Chollet S, Bucciarelli E, Sarthou G, Schultes S, Jean F (2007) Grazing-induced changes in cell wall silicification in a marine diatom. Protist 158:21–28

    Article  PubMed  CAS  Google Scholar 

  • Poulsen N, Kroger N (2004) Silica morphogenesis by alternative processing of silaffins in the diatom Thalassiosira pseudonana. J Biol Chem 279:42993–42999

    Article  PubMed  CAS  Google Scholar 

  • Poulsen NC, Spector I, Spurck TP, Schultz TF, Wetherbee R (1999) Diatom gliding is the result of an actin-myosin motility system. Cell Motil Cytoskeleton 44:23–33

    Article  PubMed  CAS  Google Scholar 

  • Rabosky DL, Sorhannus U (2009) Diversity dynamics of marine planktonic diatoms across the Cenozoic. Nature 457:183–187

    Article  PubMed  CAS  Google Scholar 

  • Reimann BEF (1964) Deposition of silica inside a diatom cell. Exp Cell Res 34:605–608

    Article  PubMed  CAS  Google Scholar 

  • Reimann BEF, Lewin JC, Volcani BE (1966) Studies on the biochemistry and fine structure of the silica shell formation in diatoms. II. The structure of the cell wall of Navicula pelliculosa (Bréb.) Hilse. J Phycol 2:74–84

    Article  Google Scholar 

  • Reimann BEF, Volcani BE (1968) Studies on the biochemistry and fine structure of silica shell formation in diatoms III. The structure of the cell wall of Phaecdactylum tricornutum Bohlin. J Ultrastruct Res 21:182–193

    Article  Google Scholar 

  • Rajangam AS, Kumar M, Aspeborg H, Guerriero G, Arvestad L, Pansri P, Brown CJL, Hober S, Blomqvist K, Divne C et al (2008) MAP20, a microtubule-associated protein in the secondary cell walls of hybrid aspen, is a target of the cellulose synthesis inhibitor 2,6-dichlorobenzonitrile. Plant Physiol 148:1283–1294

    Article  PubMed  CAS  Google Scholar 

  • Robinson DH, Sullivan CW (1987) How do diatoms make silicon biominerals? Trends Biochem Sci 12:151–154

    Article  CAS  Google Scholar 

  • Roessler PG (2000) More tools for diatom molecular biology research. J Phycol 36:259–260

    Article  Google Scholar 

  • Sapriel G, Quinet M, Heijde M, Jourdren L, Tanty V, Luo G, Le Crom S, Lopez PJ (2009) Genome-wide transcriptome analyses of silicon metabolism in Phaeodactylum tricornutum reveal the multilevel regulation of silicic acid transporters. PLoS One 4:e7458

    Article  PubMed  Google Scholar 

  • Scheffel A, Poulsen N, Shian S, Kröger N (2011) Nanopatterned protein microrings from a diatom that direct silica morphogenesis. Proc Natl Acad Sci USA 108:3175–3180

    Article  PubMed  CAS  Google Scholar 

  • Schmid A-MM (1994) Aspects of morphogenesis and function of diatome cell walls with implications for taxonomy. Protoplasma 181:43–60

    Article  Google Scholar 

  • Sheppard V, Poulsen N, Kröger N (2010) Characterization of an endoplasmic reticulum-associated silaffin kinase from the diatom Thalassiosira pseudonana. J Biol Chem 285:1166–1176

    Article  PubMed  CAS  Google Scholar 

  • Smetacek V (1999) Diatoms and the ocean carbon cycle. Protist 150:25–32

    Article  PubMed  CAS  Google Scholar 

  • Sumper M, Brunner E, Lehmann G (2005) Biomineralization in diatoms: characterization of novel polyamines associated with silica. FEBS Lett 579:3765–3769

    Article  PubMed  CAS  Google Scholar 

  • Sumper M, Brunner E (2008) Silica biomineralisation in diatoms: the model organism Thalassiosira pseudonana. Chem Bio Chem 9:1187–1194

    PubMed  CAS  Google Scholar 

  • Sullivan CW, Volcani BE (1981) Silicon in the cellular metabolism of diatoms. In: Simpson TL, Volcani BE (eds) Silicon and siliceous structures in biological systems. Springer, New York, pp 15–42

    Chapter  Google Scholar 

  • Thamatrakoln K, Alverson AJ, Hildebrand M (2006) Comparative sequence analysis of diatom silicon transporters: toward a mechanistic model of silicon transport. J Phycol 42:822–834

    Article  CAS  Google Scholar 

  • Tatham AS, Shewry PR (2000) Elastomeric proteins: biological roles, structures and mechanisms. Trends Biochem Sci 25:567–571

    Article  PubMed  CAS  Google Scholar 

  • Takeshita N, Ohta A, Horiuchi H (2005) CsmA, a class V chitin synthase with a myosin motor-like domain, is localized through direct interaction with the actin cytoskeleton in Aspergillus nidulans. Mol Biol Cell 16:1961–1970

    Article  PubMed  CAS  Google Scholar 

  • Tesson B, Hildebrand M (2010) Extensive and intimate association of the cytoskeleton with forming silica in diatoms: control over patterning on the meso- and micro-scale. PLoS One 5:e14300

    Article  PubMed  Google Scholar 

  • Tsuizaki M, Takeshita N, Ohta A, Horiuchi H (2009) Myosin motor-like domain of the class VI chitin synthase CsmB is essential to its functions in Aspergillus nidulans. Biosci Biotechnol Biochem 73:1163–1167

    Article  PubMed  CAS  Google Scholar 

  • van de Poll WH, Vrieling EG, Gieskes WWC (1999) Location and expression of frustulins in the pennate diatoms Cylindrotheca fusiformis, Navicula pelliculosa, and Navicula salinarum (Bacillariophyceae). J Phycol 35:1044–1153

    Article  Google Scholar 

  • Vasconcelos MT, Leal MF (2008) Exudates of different marine algae promote growth and mediate trace metal binding in Phaeodactylum tricornutum. Mar Environ Res 66:499–507

    Article  PubMed  CAS  Google Scholar 

  • Vrieling EG, Beelen TPM, van Santen RA, Winfried WC, Gieskes WWC (1999) Diatom silicon biomineralization as an inspirational source of new approaches to silica production. J Biotechnol 70:39–51

    Article  CAS  Google Scholar 

  • Wang Y, Lu J, Mollet J-C, Cretz MR, Hoagland KD (1997) Extracellular matrix assembly in diatoms (Bacillariophyceae). II. 2,6-dichlorobenzonitrile inhibition of motility and stalk production in the marine diatom Achnanfhes longipes. Plant Physiol 113:071–1080

    Article  Google Scholar 

  • Webster DR, Cooksey KE, Rubin RW (1985) An investigation of the involvement of cytoskeletal structures and secretion in gliding motility of the marine diatom, Amphora coffeaeformis. Cell Motil 5:103–122

    Article  CAS  Google Scholar 

  • Wells AL, Lin AW, Chen L-Q, Safer D, Cain SM, Hasson T, Carragher BO, Milligan RA, Sweeney HL (1999) Myosin VI is an actin-basedmotor that moves backwards. Nature 401:505–508

    Article  PubMed  CAS  Google Scholar 

  • Wichard T, Gerecht A, Boersma M, Poulet SA, Wiltshire K, Pohnert G (2007) Lipid and fatty acid composition of diatoms revisited: rapid wound-activated change of food quality parameters influences herbivorous copepod reproductive success. Chembiochem 8:1146–1153

    Article  PubMed  CAS  Google Scholar 

  • Wigglesworth-Cooksey B, Cooksey KE (2005) Use of fluorophore-conjugated lectins to study cell-cell interactions in model marine biofilms. Appl Environ Microbiol 71:428–435

    Article  PubMed  CAS  Google Scholar 

  • Wigglesworth-Cooksey B, Berglund D, Cooksey KE (2001) Cell–cell and cell–surface interactions in an illuminated biofilm: implications for marine sediment stabilization. Geochem Trans 10:75–82. doi:10.1039/b107814n

    Article  Google Scholar 

  • Wustman BA, Cretz MR, Hoagland KD (1997) Extracellular matrix assembly in diatoms (Bacillariophyceae) 1. A model of adhesives based on chemical characterization and localization of polysaccharides from the marine diatom Achnanthes longipes and other diatoms. Plant Physiol 113:1059–1069

    PubMed  CAS  Google Scholar 

  • Wustman BA, Lind J, Wetherbee R, Gretz MR (1998) Extracellular matrix assembly in diatoms (Bacillariophyceae). III. Organization of fucoglucurono-galactans within the adhesive stalks of Achnanthes longipes. Plant Physiol 116:1431–1441

    Article  PubMed  CAS  Google Scholar 

  • Zurzolo C, Bowler C (2001) Exploring bioinorganic pattern formation in diatoms. A story of polarized trafficking. Plant Physiol 127:1339–1345

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diedrik Menzel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Aumeier, C., Menzel, D. (2012). Secretion in the Diatoms. In: Vivanco, J., Baluška, F. (eds) Secretions and Exudates in Biological Systems. Signaling and Communication in Plants, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23047-9_10

Download citation

Publish with us

Policies and ethics