Skip to main content

Weak Cost Monadic Logic over Infinite Trees

  • Conference paper
Mathematical Foundations of Computer Science 2011 (MFCS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6907))

Abstract

Cost monadic logic has been introduced recently as a quantitative extension to monadic second-order logic. A sentence in the logic defines a function from a set of structures to ℕ ∪ { ∞ }, modulo an equivalence relation which ignores exact values but preserves boundedness properties. The rich theory associated with these functions has already been studied over finite words and trees.

We extend the theory to infinite trees for the weak form of the logic (where second-order quantification is interpreted over finite sets). In particular, we show weak cost monadic logic is equivalent to weak cost automata, and finite-memory strategies suffice in the infinite two-player games derived from such automata. We use these results to provide a decision procedure for the logic and to show there is a function definable in cost monadic logic which is not definable in weak cost monadic logic.

Supported by the French ANR 2007 JCJC 0051 JADE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bojanczyk, M.: Weak MSO with the unbounding quantifier. In: Albers, S., Marion, J.Y. (eds.) STACS. LIPIcs, vol. 3, pp. 159–170. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany (2009)

    Google Scholar 

  2. Bojanczyk, M., Colcombet, T.: Bounds in ω-regularity. In: LICS, pp. 285–296. IEEE Computer Society, Los Alamitos (2006)

    Google Scholar 

  3. Colcombet, T.: Regular cost functions over words (2009), manuscript online

    Google Scholar 

  4. Colcombet, T.: The theory of stabilisation monoids and regular cost functions. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 139–150. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Colcombet, T., Löding, C.: The nesting-depth of disjunctive mu-calculus. In: Kaminski, M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 416–430. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Colcombet, T., Löding, C.: The non-deterministic Mostowski hierarchy and distance-parity automata. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 398–409. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Colcombet, T., Löding, C.: Regular cost functions over finite trees. In: LICS, pp. 70–79. IEEE Computer Society, Los Alamitos (2010)

    Google Scholar 

  8. Hashiguchi, K.: Relative star height, star height and finite automata with distance functions. In: Pin, J.E. (ed.) LITP 1988. LNCS, vol. 386, pp. 74–88. Springer, Heidelberg (1989)

    Chapter  Google Scholar 

  9. Kirsten, D.: Distance desert automata and the star height problem. RAIRO - Theoretical Informatics and Applications 39(3), 455–509 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Krob, D.: The equality problem for rational series with multiplicities in the tropical semiring is undecidable. International Journal of Algebra and Computation 4, 405–425 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. Muller, D.E., Saoudi, A., Schupp, P.E.: Alternating automata. the weak monadic theory of the tree, and its complexity. In: Kott, L. (ed.) ICALP 1986. LNCS, vol. 226, pp. 275–283. Springer, Heidelberg (1986)

    Google Scholar 

  12. Parigot, M.: Automata, games, and positive monadic theories of trees. In: Nori, K.V. (ed.) FSTTCS 1987. LNCS, vol. 287, pp. 44–57. Springer, Heidelberg (1987)

    Google Scholar 

  13. Rabin, M.O.: Weakly definable relations and special automata. In: Mathematical Logic and Foundations of Set Theory (Proc. Internat. Colloq., Jerusalem, 1968), pp. 1–23. North-Holland, Amsterdam (1970)

    Google Scholar 

  14. Thomas, W.: Languages, automata, and logic. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages. Beyond Words, vol. 3, pp. 389–455. Springer, Heidelberg (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag GmbH Berlin Heidelberg

About this paper

Cite this paper

Vanden Boom, M. (2011). Weak Cost Monadic Logic over Infinite Trees. In: Murlak, F., Sankowski, P. (eds) Mathematical Foundations of Computer Science 2011. MFCS 2011. Lecture Notes in Computer Science, vol 6907. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22993-0_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22993-0_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22992-3

  • Online ISBN: 978-3-642-22993-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics