Skip to main content

Infinite Synchronizing Words for Probabilistic Automata

  • Conference paper
Mathematical Foundations of Computer Science 2011 (MFCS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6907))

Abstract

Probabilistic automata are finite-state automata where the transitions are chosen according to fixed probability distributions. We consider a semantics where on an input word the automaton produces a sequence of probability distributions over states. An infinite word is accepted if the produced sequence is synchronizing, i.e. the sequence of the highest probability in the distributions tends to 1. We show that this semantics generalizes the classical notion of synchronizing words for deterministic automata. We consider the emptiness problem, which asks whether some word is accepted by a given probabilistic automaton, and the universality problem, which asks whether all words are accepted. We provide reductions to establish the PSPACE-completeness of the two problems.

This work has been partly supported by the MoVES project (P6/39) which is part of the IAP-Phase VI Interuniversity Attraction Poles Programme funded by the Belgian State, Belgian Science Policy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baier, C., Bertrand, N., Größer, M.: On decision problems for probabilistic büchi automata. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 287–301. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  2. Baier, C., Größer, M.: Recognizing omega-regular languages with probabilistic automata. In: Proc. of LICS: Logic in Comp. Science, pp. 137–146. IEEE, Los Alamitos (2005)

    Google Scholar 

  3. Benenson, Y., Adar, R., Paz-Elizur, T., Livneh, Z., Shapiro, E.: DNA molecule provides a computing machine with both data and fuel. Proc. National Acad. Sci. 100, 2191–2196 (2003)

    Article  Google Scholar 

  4. Chadha, R., Sistla, A.P., Viswanathan, M.: On the expressiveness and complexity of randomization in finite state monitors. In: Proc. of LICS: Logic in Computer Science, pp. 18–29. IEEE Comp. Soc., Los Alamitos (2008)

    Google Scholar 

  5. Doyen, L., Massart, T., Shirmohammadi, M.: Synchronizing objectives for Markov decision processes. In: Proc. of iWIGP, pp. 61–75 (2011)

    Google Scholar 

  6. Doyen, L., Massart, T., Shirmohammadi, M.: Infinite synchronizing words for probabilistic automata. Tech. Rep, 138, Université Libre de Bruxelles (ULB), Belgium (June 2011)

    Google Scholar 

  7. Kfoury, D.J.: Synchronizing sequences for probabilistic automata. Studies in Applied Mathematics 29, 101–103 (1970)

    MathSciNet  Google Scholar 

  8. Korthikanti, V.A., Viswanathan, M., Kwon, Y., Agha, G.: Reasoning about mdps as transformers of probability distributions. In: Proc. of QEST: Quantitative Evaluation of Systems, pp. 199–208. IEEE Computer Society, Los Alamitos (2009)

    Google Scholar 

  9. Kwon, Y., Agha, G.: Linear inequality ltl (iltl): A model checker for discrete time Markov chains. In: ICFEM, pp. 194–208 (2004)

    Google Scholar 

  10. Paz, A.: Introduction to Probabilistic Automata. Academic Press, New York (1971)

    MATH  Google Scholar 

  11. Rabin, M.O.: Probabilistic automata. Information and Control 6(3), 230–245 (1963)

    Article  Google Scholar 

  12. Sistla, A.P., Vardi, M.Y., Wolper, P.: The complementation problem for Büchi automata with applications to temporal logic. Theor. Comput. Sci. 49, 217–237 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  13. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time. In: Proceedings of the 5th Annual Symposium on Theory of Computing, pp. 1–9. ACM Press, New York (1973)

    Google Scholar 

  14. Tracol, M., Baier, C., Größer, M.: Recurrence and transience for probabilistic automata. In: Proc. of FSTTCS: Foundations of Software Technology and Theoretical Computer Science. LIPIcs, vol. 4, pp. 395–406. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2009)

    Google Scholar 

  15. Volkov, M.V.: Synchronizing automata and the Černý conjecture. In: Martín-Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag GmbH Berlin Heidelberg

About this paper

Cite this paper

Doyen, L., Massart, T., Shirmohammadi, M. (2011). Infinite Synchronizing Words for Probabilistic Automata. In: Murlak, F., Sankowski, P. (eds) Mathematical Foundations of Computer Science 2011. MFCS 2011. Lecture Notes in Computer Science, vol 6907. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22993-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22993-0_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22992-3

  • Online ISBN: 978-3-642-22993-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics