Skip to main content

Fetal and Adult Exposure to Bisphenol-A as a Contributing Factor in the Etiology of the Metabolic Syndrome

  • Chapter
  • First Online:
Multi-System Endocrine Disruption

Abstract

Metabolic disorders such as type 2 diabetes and obesity are among the most challenging health problems on a global scale. The number of patients is increasing worldwide at an alarming rate. Although the underlying cause of the problem is still puzzling, genetic and environmental factors are thought to have a causal influence. Furthermore, widespread human exposure to significant doses of bisphenol-A (BPA) has been reported. BPA is a product commonly used in food and beverage containers that has been demonstrated to interfere with endocrine signaling pathways at low doses during fetal, neonatal or perinatal periods as well as in adulthood. There is also increasing experimental evidence revealing the deleterious effects of BPA on energy balance and glucose homeostasis. In the present review, we will summarize the most relevant findings that confirm the critical role of BPA in the development of metabolic disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alonso-Magdalena P, Laribi O, Ropero AB, Fuentes E, Ripoll C, Soria B, Nadal A (2005) Low doses of bisphenol A and diethylstilbestrol impair Ca2+ signals in pancreatic alpha-cells through a nonclassical membrane estrogen receptor within intact islets of Langerhans. Environ Health Perspect 113:969–977

    Article  PubMed  CAS  Google Scholar 

  • Alonso-Magdalena P, Morimoto S, Ripoll C, Fuentes E, Nadal A (2006) The estrogenic effect of bisphenol A disrupts pancreatic beta-cell function in vivo and induces insulin resistance. Environ Health Perspect 114:106–112

    Article  PubMed  CAS  Google Scholar 

  • Alonso-Magdalena P, Ropero AB, Carrera MP, Cederroth CR, Baquie M, Gauthier BR, Nef S, Stefani E, Nadal A (2008) Pancreatic insulin content regulation by the estrogen receptor ER alpha. PLoS One 3(4):e2069

    Article  PubMed  Google Scholar 

  • Alonso-Magdalena P, Vieira E, Soriano S, Menes L, Burks D, Quesada I, Nadal A (2010) Bisphenol-A exposure during pregnancy disrupts glucose homeostasis in mothers and adult male offspring. Environ Health Perspect 118:1243–1250

    Article  PubMed  CAS  Google Scholar 

  • Barker DJ (1998) In utero programming of chronic disease. Clin Sci (London) 95:115–128

    Article  CAS  Google Scholar 

  • Ben-Jonathan N, Hugo ER, Brandebourg TD (2009) Effects of bisphenol A on adipokine release from human adipose tissue: implications for the metabolic syndrome. Mol Cell Endocrinol 304:49–54

    Article  PubMed  CAS  Google Scholar 

  • Bern B (1992) The fragil fetus. Princeton Scientific Publishing Co., Princenton, NJ

    Google Scholar 

  • Biddinger SB, Kahn CR (2006) From mice to men: insights into the insulin resistance syndromes. Annu Rev Physiol 68:123–158

    Article  PubMed  CAS  Google Scholar 

  • Calafat AM, Kuklenyik Z, Reidy JA, Caudill SP, Ekong J, Needham LL (2005) Urinary concentrations of bisphenol A and 4-nonylphenol in a human reference population. Environ Health Perspect 113:391–395

    Article  PubMed  CAS  Google Scholar 

  • Colborn T, Dumanoski D, Myers JP (1996) Our stolen future: are we threatening our fertility, intelligence and survival. Penguin Books, New York

    Google Scholar 

  • Cook S, Weitzman M, Auinger P, Nguyen M, Dietz WH (2003) Prevalence of a metabolic syndrome phenotype in adolescents: findings from the third National Health and Nutrition Examination Survey, 1988–1994. Arch Pediatr Adolesc Med 157:821–827

    Article  PubMed  Google Scholar 

  • Coughtrie MW, Burchell B, Leakey JE, Hume R (1988) The inadequacy of perinatal glucuronidation: immunoblot analysis of the developmental expression of individual UDP-glucuronosyltransferase isoenzymes in rat and human liver microsomes. Mol Pharmacol 34(6):729–735

    PubMed  CAS  Google Scholar 

  • Dabelea D, Mayer-Davis EJ, Imperatore G (2010) The value of national diabetes registries: SEARCH for diabetes in youth study. Curr Diab Rep 10:362–369

    Article  PubMed  Google Scholar 

  • Dodds EC, Lawson W (1936) Synthetic estrogenic agents without the phenanthrene nucleus. Nature 137:996

    Article  CAS  Google Scholar 

  • Falkner B, Hassink S, Ross J, Gidding S (2002) Dysmetabolic syndrome: multiple risk factors for premature adult disease in an adolescent girl. Pediatrics 110(1 Pt 1):e14

    Article  PubMed  Google Scholar 

  • Fox CS, Pencina MJ, Meigs JB, Vasan RS, Levitzky YS, D'Agostino RB Sr (2006) Trends in the incidence of type 2 diabetes mellitus from the 1970s to the 1990s: the Framingham heart study. Circulation 113:2914–2918

    Article  PubMed  Google Scholar 

  • Freedman DS, Dietz WH, Srinivasan SR, Berenson GS (1999) The relation of overweight to cardiovascular risk factors among children and adolescents: the Bogalusa Heart Study. Pediatrics 103(6 Pt 1):1175–1182

    Article  PubMed  CAS  Google Scholar 

  • Fritsche L, Weigert C, Haring HU, Lehmann R (2008) How insulin receptor substrate proteins regulate the metabolic capacity of the liver–implications for health and disease. Curr Med Chem 15:1316–1329

    Article  PubMed  CAS  Google Scholar 

  • Giguere V (2008) Transcriptional control of energy homeostasis by the estrogen-related receptors. Endocr Rev 29:677–696

    Article  PubMed  CAS  Google Scholar 

  • Gilbert S, Epel D (2009) Ecological developmental biology: integrating epigenetics, medicine and evolution. Sinauer Associates Inc., Sunderland, MA

    Google Scholar 

  • Gould JC, Leonard LS, Maness SC, Wagner BL, Conner K, Zacharewski T, Safe S, McDonnell DP, Gaido KW (1998) Bisphenol A interacts with the estrogen receptor alpha in a distinct manner from estradiol. Mol Cell Endocrinol 142:203–214

    Article  PubMed  CAS  Google Scholar 

  • Grandjean P, Landrigan PJ (2006) Developmental neurotoxicity of industrial chemicals. Lancet 368:2167–2178

    Article  PubMed  CAS  Google Scholar 

  • Heindel JJ, Vom Saal FS (2009) Role of nutrition and environmental endocrine disrupting chemicals during the perinatal period on the aetiology of obesity. Mol Cell Endocrinol 304:90–96

    Article  PubMed  CAS  Google Scholar 

  • Heintz NH, Janssen-Heininger YM, Mossman BT (2010) Asbestos, lung cancers, and mesotheliomas: from molecular approaches to targeting tumor survival pathways. Am J Respir Cell Mol Biol 42:133–139

    Article  PubMed  CAS  Google Scholar 

  • Herman MA, Kahn BB (2006) Glucose transport and sensing in the maintenance of glucose homeostasis and metabolic harmony. J Clin Invest 116:1767–1775

    Article  PubMed  CAS  Google Scholar 

  • Howdeshell KL, Hotchkiss AK, Thayer KA, Vandenbergh JG, Vom Saal FS (1999) Exposure to bisphenol A advances puberty. Nature 401:763–764

    Article  PubMed  CAS  Google Scholar 

  • Hugo ER, Brandebourg TD, Woo JG, Loftus J, Alexander JW, Ben-Jonathan N (2008) Bisphenol A at environmentally relevant doses inhibits adiponectin release from human adipose tissue explants and adipocytes. Environ Health Perspect 116:1642–1647

    Article  PubMed  CAS  Google Scholar 

  • Inoue H, Tsuruta A, Kudo S, Ishii T, Fukushima Y, Iwano H, Yokota H, Kato S (2005) Bisphenol a glucuronidation and excretion in liver of pregnant and nonpregnant female rats. Drug Metab Dispos 33:55–59

    Article  PubMed  CAS  Google Scholar 

  • Ito T, Ando H, Suzuki T, Ogura T, Hotta K, Imamura Y, Yamaguchi Y, Handa H (2010) Identification of a primary target of thalidomide teratogenicity. Science 327:1345–1350

    Article  PubMed  CAS  Google Scholar 

  • Jhala US, Canettieri G, Screaton RA, Kulkarni RN, Krajewski S, Reed J, Walker J, Lin X, White M, Montminy M (2003) cAMP promotes pancreatic beta-cell survival via CREB-mediated induction of IRS2. Genes Dev 17:1575–1580

    Article  PubMed  CAS  Google Scholar 

  • Kahn CR (2003) Knockout mice challenge our concepts of glucose homeostasis and the pathogenesis of diabetes. Exp Diabesity Res 4:169–182

    Article  PubMed  Google Scholar 

  • Kahn R, Buse J, Ferrannini E, Stern M (2005) The metabolic syndrome: time for a critical appraisal: joint statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 28:2289–2304

    Article  PubMed  Google Scholar 

  • Kahn SE, Hull RL, Utzschneider KM (2006) Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444:840–846

    Article  PubMed  CAS  Google Scholar 

  • Kahn SE, Zraika S, Utzschneider KM, Hull RL (2009) The beta cell lesion in type 2 diabetes: there has to be a primary functional abnormality. Diabetologia 52:1003–1012

    Article  PubMed  CAS  Google Scholar 

  • Kang JH, Kondo F, Katayama Y (2006) Human exposure to bisphenol A. Toxicology 226:79–89

    Article  PubMed  CAS  Google Scholar 

  • Kuiper GG, Lemmen JG, Carlsson B, Corton JC, Safe SH, van der Saag PT, van der Burg B, Gustafsson JA (1998) Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology 139:4252–4263

    Article  PubMed  CAS  Google Scholar 

  • Lang IA, Galloway TS, Scarlett A, Henley WE, Depledge M, Wallace RB, Melzer D (2008) Association of urinary bisphenol A concentration with medical disorders and laboratory abnormalities in adults. JAMA 300:1303–1310

    Article  PubMed  CAS  Google Scholar 

  • Masuno H, Kidani T, Sekiya K, Sakayama K, Shiosaka T, Yamamoto H, Honda K (2002) Bisphenol A in combination with insulin can accelerate the conversion of 3T3-L1 fibroblasts to adipocytes. J Lipid Res 43:676–684

    PubMed  CAS  Google Scholar 

  • Masuno H, Iwanami J, Kidani T, Sakayama K, Honda K (2005) Bisphenol a accelerates terminal differentiation of 3T3-L1 cells into adipocytes through the phosphatidylinositol 3-kinase pathway. Toxicol Sci 84:319–327

    Article  PubMed  CAS  Google Scholar 

  • Matsushima A, Teramoto T, Okada H, Liu X, Tokunaga T, Kakuta Y, Shimohigashi Y (2008) ERRgamma tethers strongly bisphenol A and 4-alpha-cumylphenol in an induced-fit manner. Biochem Biophys Res Commun 373:408–413

    Article  PubMed  CAS  Google Scholar 

  • Melzer D, Rice NE, Lewis C, Henley WE, Galloway TS (2010) Association of urinary bisphenol a concentration with heart disease: evidence from NHANES 2003/06. PLoS One 5(1):e8673

    Article  PubMed  Google Scholar 

  • Milligan SR, Khan O, Nash M (1998) Competitive binding of xenobiotic oestrogens to rat alpha-fetoprotein and to sex steroid binding proteins in human and rainbow trout (Oncorhynchus mykiss) plasma. Gen Comp Endocrinol 112:89–95

    Article  PubMed  CAS  Google Scholar 

  • Miyawaki J, Sakayama K, Kato H, Yamamoto H, Masuno H (2007) Perinatal and postnatal exposure to bisphenol a increases adipose tissue mass and serum cholesterol level in mice. J Atheroscler Thromb 14:245–252

    Article  PubMed  CAS  Google Scholar 

  • Moriyama K, Tagami T, Akamizu T, Usui T, Saijo M, Kanamoto N, Hataya Y, Shimatsu A, Kuzuya H, Nakao K (2002) Thyroid hormone action is disrupted by bisphenol A as an antagonist. J Clin Endocrinol Metab 87:5185–5190

    Article  PubMed  CAS  Google Scholar 

  • Munoz-de-Toro M, Markey CM, Wadia PR, Luque EH, Rubin BS, Sonnenschein C, Soto AM (2005) Perinatal exposure to bisphenol-A alters peripubertal mammary gland development in mice. Endocrinology 146:4138–4147

    Article  PubMed  CAS  Google Scholar 

  • Nadal A, Ropero AB, Laribi O, Maillet M, Fuentes E, Soria B (2000) Nongenomic actions of estrogens and xenoestrogens by binding at a plasma membrane receptor unrelated to estrogen receptor alpha and estrogen receptor beta. Proc Natl Acad Sci USA 97:11603–11608

    Article  PubMed  CAS  Google Scholar 

  • Nadal A, Alonso-Magdalena P, Soriano S, Quesada I, Ropero AB (2009) The pancreatic beta-cell as a target of estrogens and xenoestrogens: implications for blood glucose homeostasis and diabetes. Mol Cell Endocrinol 304:63–68

    Article  PubMed  CAS  Google Scholar 

  • Newbold RR, Padilla-Banks E, Jefferson WN, Heindel JJ (2008) Effects of endocrine disruptors on obesity. Int J Androl 31:201–208

    Article  PubMed  CAS  Google Scholar 

  • Newbold RR, Padilla-Banks E, Jefferson WN (2009) Environmental estrogens and obesity. Mol Cell Endocrinol 304:84–89

    Article  PubMed  CAS  Google Scholar 

  • Nikaido Y, Yoshizawa K, Danbara N, Tsujita-Kyutoku M, Yuri T, Uehara N, Tsubura A (2004) Effects of maternal xenoestrogen exposure on development of the reproductive tract and mammary gland in female CD-1 mouse offspring. Reprod Toxicol 18:803–811

    Article  PubMed  CAS  Google Scholar 

  • Nunez AA, Kannan K, Giesy JP, Fang J, Clemens LG (2001) Effects of bisphenol A on energy balance and accumulation in brown adipose tissue in rats. Chemosphere 42:917–922

    Article  PubMed  CAS  Google Scholar 

  • O’Rahilly S (2009) Human genetics illuminates the paths to metabolic disease. Nature 462:307–314

    Article  PubMed  Google Scholar 

  • Oetjen E, Diedrich T, Eggers A, Eckert B, Knepel W (1994) Distinct properties of the cAMP-responsive element of the rat insulin I gene. J Biol Chem 269:27036–27044

    PubMed  CAS  Google Scholar 

  • Okada H, Tokunaga T, Liu X, Takayanagi S, Matsushima A, Shimohigashi Y (2008) Direct evidence revealing structural elements essential for the high binding ability of bisphenol A to human estrogen-related receptor-gamma. Environ Health Perspect 116:32–38

    Article  PubMed  CAS  Google Scholar 

  • Olea N, Pulgar R, Perez P, Olea-Serrano F, Rivas A, Novillo-Fertrell A, Pedraza V, Soto AM, Sonnenschein C (1996) Estrogenicity of resin-based composites and sealants used in dentistry. Environ Health Perspect 104:298–305

    Article  PubMed  CAS  Google Scholar 

  • Patisaul HB, Bateman HL (2008) Neonatal exposure to endocrine active compounds or an ERbeta agonist increases adult anxiety and aggression in gonadally intact male rats. Horm Behav 53:580–588

    Article  PubMed  CAS  Google Scholar 

  • Qatanani M, Lazar MA (2007) Mechanisms of obesity-associated insulin resistance: many choices on the menu. Genes Dev 21:1443–1455

    Article  PubMed  CAS  Google Scholar 

  • Quesada I, Fuentes E, Viso-Leon MC, Soria B, Ripoll C, Nadal A (2002) Low doses of the endocrine disruptor bisphenol-A and the native hormone 17beta-estradiol rapidly activate transcription factor CREB. FASEB J 16:1671–1673

    PubMed  CAS  Google Scholar 

  • Reaven GM (1988) Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 37:1595–1607

    Article  PubMed  CAS  Google Scholar 

  • Richter CA, Birnbaum LS, Farabollini F, Newbold RR, Rubin BS, Talsness CE, Vandenbergh JG, Walser-Kuntz DR, Vom Saal FS (2007) In vivo effects of bisphenol A in laboratory rodent studies. Reprod Toxicol 24:199–224

    Article  PubMed  CAS  Google Scholar 

  • Ropero AB, Alonso-Magdalena P, Garcia-Garcia E, Ripoll C, Fuentes E, Nadal A (2008a) Bisphenol-A disruption of the endocrine pancreas and blood glucose homeostasis. Int J Androl 31:194–200

    Article  PubMed  CAS  Google Scholar 

  • Ropero AB, Alonso-Magdalena P, Quesada I, Nadal A (2008b) The role of estrogen receptors in the control of energy and glucose homeostasis. Steroids 73:874–879

    Article  PubMed  CAS  Google Scholar 

  • Rosen ED, Spiegelman BM (2006) Adipocytes as regulators of energy balance and glucose homeostasis. Nature 444(7121):847–853

    Article  PubMed  CAS  Google Scholar 

  • Rosenbloom AL, Joe JR, Young RS, Winter WE (1999) Emerging epidemic of type 2 diabetes in youth. Diabetes Care 22:345–354

    Article  PubMed  CAS  Google Scholar 

  • Routledge EJ, White R, Parker MG, Sumpter JP (2000) Differential effects of xenoestrogens on coactivator recruitment by estrogen receptor (ER) alpha and ERbeta. J Biol Chem 275:35986–35993

    Article  PubMed  CAS  Google Scholar 

  • Rubin BS, Murray MK, Damassa DA, King JC, Soto AM (2001) Perinatal exposure to low doses of bisphenol A affects body weight, patterns of estrous cyclicity, and plasma LH levels. Environ Health Perspect 109:675–680

    Article  PubMed  CAS  Google Scholar 

  • Ryan KK, Haller AM, Sorrell JE, Woods SC, Jandacek RJ, Seeley RJ (2010) Perinatal exposure to bisphenol-a and the development of metabolic syndrome in CD-1 mice. Endocrinology 151:2603–2612

    Article  PubMed  CAS  Google Scholar 

  • Safe SH, Pallaroni L, Yoon K, Gaido K, Ross S, McDonnell D (2002) Problems for risk assessment of endocrine-active estrogenic compounds. Environ Health Perspect 110(Suppl 6):925–929

    Article  PubMed  CAS  Google Scholar 

  • Sajiki J, Takahashi K, Yonekubo J (1999) Sensitive method for the determination of bisphenol-A in serum using two systems of high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl 736:255–261

    Article  PubMed  CAS  Google Scholar 

  • Sakurai K, Kawazuma M, Adachi T, Harigaya T, Saito Y, Hashimoto N, Mori C (2004) Bisphenol A affects glucose transport in mouse 3T3-F442A adipocytes. Br J Pharmacol 141:209–214

    Article  PubMed  CAS  Google Scholar 

  • Sargis RM, Johnson DN, Choudhury RA, Brady MJ (2010) Environmental endocrine disruptors promote adipogenesis in the 3T3-L1 cell line through glucocorticoid receptor activation. Obesity (Silver Spring) 18:1283–1288

    Article  CAS  Google Scholar 

  • Seidlova-Wuttke D, Jarry H, Christoffel J, Rimoldi G, Wuttke W (2005) Effects of bisphenol-A (BPA), dibutylphtalate (DBP), benzophenone-2 (BP2), procymidone (Proc), and linurone (Lin) on fat tissue, a variety of hormones and metabolic parameters: a 3 months comparison with effects of estradiol (E2) in ovariectomized (ovx) rats. Toxicology 213:13–24

    Article  PubMed  CAS  Google Scholar 

  • Sharpe RM, Skakkebaek NE (1993) Are oestrogens involved in falling sperm counts and disorders of the male reproductive tract? Lancet 341:1392–1395

    Article  PubMed  CAS  Google Scholar 

  • Skakkebaek NE, Rajpert-De Meyts E, Jorgensen N, Carlsen E, Petersen PM, Giwercman A, Andersen AG, Jensen TK, Andersson AM, Müller J (1998) Germ cell cancer and disorders of spermatogenesis: an environmental connection? Apmis 106:3–11, discussion 12

    Article  PubMed  CAS  Google Scholar 

  • Somm E, Schwitzgebel VM, Toulotte A, Cederroth CR, Combescure C, Nef S, Aubert ML, Hüppi PS (2009) Perinatal exposure to bisphenol a alters early adipogenesis in the rat. Environ Health Perspect 117:1549–1555

    PubMed  CAS  Google Scholar 

  • Takahashi O, Oishi S (2000) Disposition of orally administered 2,2-Bis(4-hydroxyphenyl)propane (bisphenol A) in pregnant rats and the placental transfer to fetuses. Environ Health Perspect 108:931–935

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi T, Tsutsumi O (2002) Serum bisphenol a concentrations showed gender differences, possibly linked to androgen levels. Biochem Biophys Res Commun 291:76–78

    Article  PubMed  CAS  Google Scholar 

  • Vandenberg LN, Maffini MV, Sonnenschein C, Rubin BS, Soto AM (2009) Bisphenol-A and the great divide: a review of controversies in the field of endocrine disruption. Endocr Rev 30:75–95

    Article  PubMed  CAS  Google Scholar 

  • Vom Saal FS, Myers JP (2008) Bisphenol A and risk of metabolic disorders. JAMA 300:1353–1355

    Article  PubMed  Google Scholar 

  • Warner MJ, Ozanne SE (2010) Mechanisms involved in the developmental programming of adulthood disease. Biochem J 427:333–347

    Article  PubMed  CAS  Google Scholar 

  • Watson CS, Bulayeva NN, Wozniak AL, Finnerty CC (2005) Signaling from the membrane via membrane estrogen receptor-alpha: estrogens, xenoestrogens, and phytoestrogens. Steroids 70:364–371

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Liu Y, Sadamatsu M, Tsutsumi S, Akaike M, Ushijima H, Kato N (2007) Perinatal bisphenol A affects the behavior and SRC-1 expression of male pups but does not influence on the thyroid hormone receptors and its responsive gene. Neurosci Res 58:149–155

    Article  PubMed  CAS  Google Scholar 

  • Zoeller RT, Bansal R, Parris C (2005) Bisphenol-A, an environmental contaminant that acts as a thyroid hormone receptor antagonist in vitro, increases serum thyroxine, and alters RC3/neurogranin expression in the developing rat brain. Endocrinology 146:607–612

    Article  PubMed  CAS  Google Scholar 

  • Zsarnovszky A, Le HH, Wang HS, Belcher SM (2005) Ontogeny of rapid estrogen-mediated extracellular signal-regulated kinase signaling in the rat cerebellar cortex: potent nongenomic agonist and endocrine disrupting activity of the xenoestrogen bisphenol A. Endocrinology 146:5388–5396

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paloma Alonso-Magdalena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Alonso-Magdalena, P., Nadal, A. (2011). Fetal and Adult Exposure to Bisphenol-A as a Contributing Factor in the Etiology of the Metabolic Syndrome. In: Bourguignon, JP., Jégou, B., Kerdelhué, B., Toppari, J., Christen, Y. (eds) Multi-System Endocrine Disruption. Research and Perspectives in Endocrine Interactions. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22775-2_8

Download citation

Publish with us

Policies and ethics