Skip to main content

Metabolic Engineering of Cyanobacteria for Direct Conversion of CO2 to Hydrocarbon Biofuels

  • Chapter
Progress in Botany 73

Part of the book series: Progress in Botany ((BOTANY,volume 73))

Abstract

Cyanobacteria are oxygenic photosynthesizers like plant and algae and hence can capture CO2 via the Calvin cycle and convert it to a suite of organic compounds. They are Gram-negative bacteria and are well suited for synthetic biology and metabolic engineering approaches for the phototrophic production of various desirable biomolecules, including ethanol, butanol, biodiesel, and hydrocarbon biofuels. Phototrophic biosynthesis of high-density liquid biofuels in cyanobacteria would serve as a good complement to the microbial production of biodiesel and hydrocarbons in heterotrophic bacteria such as Escherichia coli. Two groups of hydrocarbon biofuels that are being considered in microbial production systems are alkanes and isoprenoids. Alkanes of defined chain lengths can be used as drop-in fuel similar to gasoline and jet fuel. Many cyanobacteria synthesize alkanes, albeit in minute quantities. Optimizing the expression of the alkane biosynthesis genes and enhancing the carbon flux through the fatty acid and alkane biosynthesis pathways should lead to the accumulation and/or secretion of notable amounts of alkanes. It also becomes important to understand how to control the chain lengths of the produced alkane molecules. Isoprenoids, e.g., the monoterpene pinene and the sesquiterpene farnesene, are considered precursors for future biodiesel or next-generation jet fuel. Cyanobacteria produce carotenoids and extending the carotenoid biosynthetic pathways by the introduction of constructs for appropriate terpene synthases should allow the biosynthesis of selected mono- and sesquiterpenes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agger SA, Lopez-Gallego F, Hoye TR, Schmidt-Dannert C (2008) Identification of sesquiterpene synthases from Nostoc punctiforme PCC 73102 and Nostoc sp strain PCC 7120. J Bacteriol 190:6084–6096

    Article  PubMed  CAS  Google Scholar 

  • Atsumi S, Higashide W, Liao JC (2009) Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat Biotechnol 27:1177–1180

    Article  PubMed  CAS  Google Scholar 

  • Beller HR, Goh EB, Keasling JD (2010) Genes involved in long-chain alkene biosynthesis in Micrococcus luteus. Appl Environ Microb 76:1212–1223

    Article  CAS  Google Scholar 

  • Bhadauriya P, Gupta R, Singh S, Bisen PS (2008) n-Alkanes variability in the diazotrophic cyanobacterium Anabaena cylindrica in response to NaCl stress. World J Microb Biot 24:139–141

    Article  CAS  Google Scholar 

  • Bonaventure G, Salas JJ, Pollard MR, Ohlrogge JB (2003) Disruption of the FATB gene in Arabidopsis demonstrates an essential role of saturated fatty acids in plant growth. Plant Cell 15:1020–1033

    Article  PubMed  CAS  Google Scholar 

  • Campbell JW, Cronan JE (2001) Bacterial fatty acid biosynthesis: targets for antibacterial drug discovery. Annu Rev Microbiol 55:305–332

    Article  PubMed  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  PubMed  CAS  Google Scholar 

  • Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:126–131

    Article  PubMed  CAS  Google Scholar 

  • Cho H, Cronan JE (1994) Protease-I of Escherichia coli functions as a thioesterase in-vivo. J Bacteriol 176:1793–1795

    PubMed  CAS  Google Scholar 

  • Clarens AF, Resurreccion EP, White MA, Colosi LM (2010) Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ Sci Technol 44:1813–1819

    Article  PubMed  CAS  Google Scholar 

  • Costa JAV, de Morais MG (2011) The role of biochemical engineering in the production of biofuels from microalgae. Bioresour Technol 102(1):2–9

    Article  PubMed  CAS  Google Scholar 

  • Cronan JE (2003) Bacterial membrane lipids: where do we stand? Annu Rev Microbiol 57:203–224

    Article  PubMed  CAS  Google Scholar 

  • Dembitsky VM, Dor I, Shkrob I, Aki M (2001) Branched alkanes and other apolar compounds produced by the cyanobacterium Microcoleus vaginatus from the Negev Desert. Russ J Bioorg Chem 27:110–119

    Article  CAS  Google Scholar 

  • Deng MD, Coleman JR (1999) Ethanol synthesis by genetic engineering in cyanobacteria. Appl Environ Microb 65:523–528

    CAS  Google Scholar 

  • Fortman JL, Chhabra S, Mukhopadhyay A, Chou H, Lee TS, Steen E, Keasling JD (2008) Biofuel alternatives to ethanol: pumping the microbial well. Trends Biotechnol 26:375–381

    Article  PubMed  CAS  Google Scholar 

  • Gressel J (2008) Transgenics are imperative for biofuel crops. Plant Sci 174:246–263

    Article  CAS  Google Scholar 

  • Hagio M, Gombos Z, Varkonyi Z, Masamoto K, Sato N, Tsuzuki M, Wada H (2000) Direct evidence for requirement of phosphatidylglycerol in photosystem II of photosynthesis. Plant Physiol 124:795–804

    Article  PubMed  CAS  Google Scholar 

  • Hillen LW, Pollard G, Wake LV, White N (1982) Hydrocracking of the oils of Botryococcus braunii to transport fuels. Biotechnol Bioeng 24:193–205

    Article  PubMed  CAS  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  PubMed  CAS  Google Scholar 

  • Jansson C, Northen T (2010) Calcifying cyanobacteria – the potential of biomineralization for carbon capture and storage. Curr Opin Biotech 21:365–371

    Article  PubMed  CAS  Google Scholar 

  • Jha JK, Maiti MK, Bhattacharjee A, Basu A, Sen PC, Sen SK (2006) Cloning and functional expression of an acyl-ACP thioesterase FatB type from Diploknema (Madhuca) butyracea seeds in Escherichia coli. Plant Physiol Bioch 44:645–655

    Article  CAS  Google Scholar 

  • Jones A, Davies HM, Voelker TA (1995) Palmitoyl-acyl carrier protein (ACP) thioesterase and the evolutionary origin of plant acyl-ACP thioesterases. Plant Cell 7:359–371

    PubMed  CAS  Google Scholar 

  • Kaczmarzyk D, Fulda M (2010) Fatty acid activation in cyanobacteria mediated by acyl–acyl carrier protein synthetase enables fatty acid recycling. Plant Physiol 152:1598–1610

    Article  PubMed  CAS  Google Scholar 

  • Kalscheuer R, Stolting T, Steinbuchel A (2006) Microdiesel: Escherichia coli engineered for fuel production. Microbiology 152:2529–2536

    Article  PubMed  CAS  Google Scholar 

  • Keasling JD, Chou H (2008) Metabolic engineering delivers next-generation biofuels. Nat Biotechnol 26:298–299

    Article  PubMed  CAS  Google Scholar 

  • Khosla C (2008) Microbial synthesis of biodiesel Book Microbial synthesis of biodiesel. Stanford University, Stanford

    Google Scholar 

  • Kirby J, Keasling JD (2008) Metabolic engineering of microorganisms for isoprenoid production. Nat Prod Rep 25:656–661

    Article  PubMed  CAS  Google Scholar 

  • Ladygina N, Dedyukhina EG, Vainshtein MB (2006) A review on microbial synthesis of hydrocarbons. Process Biochem 41:1001–1014

    Article  CAS  Google Scholar 

  • Lennen RM, Braden DJ, West RM, Dumesic JA, Pfleger BF (2010) A process for microbial hydrocarbon synthesis: overproduction of fatty acids in Escherichia coli and catalytic conversion to alkanes. Biotechnol Bioeng 106:193–202

    Article  PubMed  CAS  Google Scholar 

  • Li W, Liu XX, Wang W, Sun H, Hu YM, Lei H, Liu GH, Gao YY (2008) Effects of antisense RNA targeting of ODC and AdoMetDC on the synthesis of polyamine synthesis and cell growth in prostate cancer cells using a prostatic androgen-dependent promoter in adenovirus. Prostate 68:1354–1361

    Article  PubMed  CAS  Google Scholar 

  • Lindberg P, Park S, Melis A (2010) Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metab Eng 12:70–79

    Article  PubMed  CAS  Google Scholar 

  • Liu XY, Curtiss R (2009) Nickel-inducible lysis system in Synechocystis sp PCC 6803. Proc Natl Acad Sci USA 106:21550–21554

    Article  PubMed  CAS  Google Scholar 

  • Lu X (2010) A perspective: photosynthetic production of fatty acid-based biofuels in genetically engineered cyanobacteria. Biotechnol Adv 28(6):742–746

    Article  PubMed  CAS  Google Scholar 

  • Lu XF, Vora H, Khosla C (2008) Overproduction of free fatty acids in E. coli: implications for biodiesel production. Metab Eng 10:333–339

    Article  PubMed  CAS  Google Scholar 

  • Ono E, Cuello JL (2007) Carbon dioxide mitigation using thermophilic cyanobacteria. Biosyst Eng 96:129–134

    Article  Google Scholar 

  • Packer M (2009) Algal capture of carbon dioxide; biomass generation as a tool for greenhouse gas mitigation with reference to New Zealand energy strategy and policy. Energy Policy 37:3428–3437

    Article  Google Scholar 

  • Radakovits R, Jinkerson RE, Darzins A, Posewitz MC (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 9:486–501

    Article  PubMed  CAS  Google Scholar 

  • Rude MA, Schirmer A (2009) New microbial fuels: a biotech perspective. Curr Opin Microbiol 12:274–281

    Article  PubMed  CAS  Google Scholar 

  • Schirmer A, Rude MA, Li XZ, Popova E, del Cardayre SB (2010) Microbial biosynthesis of alkanes. Science 329:559–562

    Article  PubMed  CAS  Google Scholar 

  • Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, Lea-Smith DJ, Smith AG (2010) Biodiesel from algae: challenges and prospects. Curr Opin Biotechnol 21:277–286

    Article  PubMed  CAS  Google Scholar 

  • Sheehan J (2009) Engineering direct conversion of CO2 to biofuel. Nat Biotechnol 27:1128–1129

    Article  PubMed  CAS  Google Scholar 

  • Steen EJ, Kang YS, Bokinsky G, Hu ZH, Schirmer A, McClure A, del Cardayre SB, Keasling JD (2010) Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463:559–562

    Article  PubMed  CAS  Google Scholar 

  • Thelen JJ, Ohlrogge JB (2002) Metabolic engineering of fatty acid biosynthesis in plants. Metab Eng 4:12–21

    Article  PubMed  CAS  Google Scholar 

  • Voelker TA, Davies HM (1994) Alteration of the specificity and regulation of fatty-acid synthesis of Escherichia coli by expression of a plant medium-chain acyl–acyl carrier protein thioesterase. J Bacteriol 176:7320–7327

    PubMed  CAS  Google Scholar 

  • Voelker T, Kinney AT (2001) Variations in the biosynthesis of seed-storage lipids. Annu Rev Plant Physiol 52:335–361

    Article  CAS  Google Scholar 

  • Walsh K, Jones GJ, Dunstan RH (1998) Effect of high irradiance and iron on volatile odour compounds in the cyanobacterium Microcystis aeruginosa. Phytochemistry 49:1227–1239

    Article  PubMed  CAS  Google Scholar 

  • Warui DM, Li N, Nørgaard H, Krebs C, Bollinger JM Jr, Booker SJ (2011) Detection of formate, rather than carbon monoxide, as the stoichiometric coproduct in conversion of fatty aldehydes to alkanes by a cyanobacterial aldehyde decarbonylase. J Am Chem Soc 133:3316–3319

    Article  PubMed  CAS  Google Scholar 

  • Yoo JH, Cheng OH, Gerber GE (2001) Determination of the native form of FadD, the Escherichia coli fatty acyl-CoA synthetase, and characterization of limited proteolysis by outer membrane protease OmpT. Biochem J 360:699–706

    Article  PubMed  CAS  Google Scholar 

  • Yuan L, Voelker TA, Hawkins DJ (1995) Modification of the substrate-specificity of an acyl–acyl carrier protein thioesterase by protein engineering. Proc Natl Acad Sci USA 92:10639–10643

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by U. S. Department of Energy Contract DE-AC02-05CH11231 with Lawrence Berkeley National Laboratory. Funding from the DOE-LDRD grant CyanoAlkanes is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christer Jansson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jansson, C. (2012). Metabolic Engineering of Cyanobacteria for Direct Conversion of CO2 to Hydrocarbon Biofuels. In: Lüttge, U., Beyschlag, W., Büdel, B., Francis, D. (eds) Progress in Botany 73. Progress in Botany, vol 73. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22746-2_3

Download citation

Publish with us

Policies and ethics