Skip to main content

Immune System in Space: General Introduction and Observations on Stress-Sensitive Regulations

  • Chapter
  • First Online:
Stress Challenges and Immunity in Space

Abstract

Numerous studies have indicated that spaceflight results in dysregulation of the human immune system. This phenomenon has been well documented following flight, where landing and re-adaptation are significant stressors. There is some limited in-flight data which indicates that immune changes do occur during spaceflight. Persistent decrements in the function of specific innate or adaptive immune cells, or alterations in cytokine production profiles, could result in clinical risk to crewmembers participating in exploration-class space missions. This chapter will introduce the immune system and innate versus adaptive immunity. How stress and spaceflight affects the immune system will be discussed, including alterations in the peripheral blood levels of specific immune cells during spaceflight. Subsequent chapters will explore the concepts of spaceflight, immunity, stress, and latent herpes virus reactivation in more detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allebban Z, Ichiki AT, Gibson LA, Jones JB, Congdon CC, Lange RD (1994) Effects of spaceflight on the number of rat peripheral blood leukocytes and lymphocyte subsets. J Leukoc Biol 55(2):209–213

    PubMed  CAS  Google Scholar 

  • Borchers AT, Keen CL, Gershwin ME (2002) Microgravity and immune responsiveness: implications for space travel. Nutrition 18:889–898

    Article  PubMed  Google Scholar 

  • Cacioppo JT, Kiecolt-Glaser JK, Malarkey WB et al (2002) Autonomic and glucocorticoid associations with the steady-state expression of latent Epstein-Barr virus. Horm Behav 42:32–41

    Article  PubMed  CAS  Google Scholar 

  • Chapes SK, Simske SJ, Forsman AD, Bateman TA, Zimmerman RJ (1999a) Effects of space flight and IGF-1 on immune function. Adv Space Res 23(12):1955–1964

    Article  PubMed  CAS  Google Scholar 

  • Chapes SK, Simske SJ, Sonnenfeld G, Miller ES, Zimmerman RJ (1999b) Effects of spaceflight and PEG-IL-2 on rat physiological and immunological responses. J Appl Physiol 86(6):2065–2076

    PubMed  CAS  Google Scholar 

  • Choukèr A, Kaufmann I, Kreth S, Hauer D, Feuerecker M, Thieme D, Vogeser M, Thiel M, Schelling G (2010) Motion sickness, stress and the endocannabinoid system. PLoS One 5:e10752

    Article  PubMed  Google Scholar 

  • Choukèr A, Thiel M, Baranov V et al (2001) Simulated microgravity, psychic stress, and immune cells in men: observations during 120-day 6 degrees HDT. J Appl Physiol 90:1736–1743

    PubMed  Google Scholar 

  • Choukèr A, Smith L, Christ F et al (2002) Effects of confinement (110 and 240 days) on neuroendocrine stress response and changes of immune cells in men. J Appl Physiol 92:1619–1627

    Article  PubMed  Google Scholar 

  • Choukèr A, Morukov B, Sams C (2008) Clinical immunology in new frontiers. Scientific American presents: looking up, Europe’s quiet revolution in microgravity research. Sci Am J 24–31

    Google Scholar 

  • Cogoli A (1993) The effect of space flight on human cellular immunity. Environ Med 37(2):107–116

    PubMed  CAS  Google Scholar 

  • Crucian BE, Cubbage ML, Sams CF (2000) Altered cytokine production by specific human peripheral blood cell subsets immediately following space flight. J Interferon Cytokine Res 20(6):547–556

    Article  PubMed  CAS  Google Scholar 

  • Crucian B, Lee P, Stowe R et al (2007) Immune system changes during simulated planetary exploration on Devon Island, high arctic. BMC Immunol 8:7

    Article  PubMed  Google Scholar 

  • Crucian BE, Stowe RP, Pierson DL, Sams CF (2008) Immune system dysregulation following short- vs long-duration spaceflight. Aviat Space Environ Med 79(9):835–843

    Article  PubMed  Google Scholar 

  • Crucian BE, Feuerecker M, Salam AP, Rybka A, Stowe RP, Morrels M, Mehta SK, Quiriarte H, Quintens R, Thieme U, Kaufmann I, Baatout DS, Pierson DL, Sams CF, Choukèr A (2011) The ESA-NASA ‘CHOICE’ study: winterover at Concordia station, interior Antarctica, as an analog for spaceflight-associated immune dysregulation. In: 18th IAA humans in space symposium, Houston, Texas, 11–15 April 2011

    Google Scholar 

  • D’argenio G, Valenti M, Scaglione G et al (2006) Up-regulation of anandamide levels as an endogenous mechanism and a pharmacological strategy to limit colon inflammation. Gastroenterology 130:A348

    Google Scholar 

  • De Rosa SC, Herzenberg LA, Roederer M (2001) 11-color, 13-parameter flow cytometry: identification of human naive T cells by phenotype, function, and T-cell receptor diversity. Nat Med 7(2):245–248

    Article  PubMed  Google Scholar 

  • Gmünder FK, Konstantinova I, Cogoli A, Lesnyak A, Bogomolov W, Grachov AW (1994) Cellular immunity in cosmonauts during long duration spaceflight on board the orbital MIR station. Aviat Space Environ Med 65(5):419–423

    PubMed  CAS  Google Scholar 

  • Gridley DS, Nelson GA, Peters LL, Kostenuik PJ, Bateman TA, Morony S et al (2003) Genetic models in applied physiology: selected contribution: effects of spaceflight on immunity in the C57BL/6 mouse. II. Activation, cytokines, erythrocytes, and platelets. J Appl Physiol 94(5):2095–2103

    PubMed  Google Scholar 

  • Gridley DS, Slater JM, Luo-Owen X, Rizvi A, Chapes SK, Stodieck LS et al (2009) Spaceflight effects on T lymphocyte distribution, function and gene expression. J Appl Physiol 106(1):194–202

    Article  PubMed  Google Scholar 

  • Gueguinou N, Huin-Schohn C, Bascove M, Bueb JL, Tschirhart E, Legrand-Frossi C et al (2009) Could spaceflight-associated immune system weakening preclude the expansion of human presence beyond Earth’s orbit? J Leukoc Biol 86(5):1027–1038

    Article  PubMed  CAS  Google Scholar 

  • Hawkins W, Zieglschmid J (1975) Clinical aspects of crew health. In: Johnston R, Dietlein L, Berry C (eds) Biomedical results of Apollo. NASA, Washington, DC, pp 43–81

    Google Scholar 

  • Hennig J, Netter P (1996) Local immunocompetence and salivary cortisol in confinement. Adv Space Biol Med 5:115–132

    Article  PubMed  CAS  Google Scholar 

  • Ichiki AT, Gibson LA, Jago TL, Strickland KM, Johnson DL, Lange RD et al (1996) Effects of spaceflight on rat peripheral blood leukocytes and bone marrow progenitor cells. J Leukoc Biol 60(1):37–43

    PubMed  CAS  Google Scholar 

  • Kimzey SL (1977) Hematology and immunology studies. In: Biomedical results from Skylab. NASA-SP-377. National Aeronautics and Space Administration, U.S. Goverment Printing Office, Washington D.C., pp 249–282

    Google Scholar 

  • Klein TW, Newton C, Larsen K et al (2003) The cannabinoid system and immune modulation. J Leukoc Biol 74:486–496

    Article  PubMed  CAS  Google Scholar 

  • Konstantinova IV, Antropova YN, Legenkov VI, Zazhirey VD (1973) Study of reactivity of blood lymphoid cells in crew members of the Soyuz-6, Soyuz-7 and Soyuz-8 spaceships before and after flight. Space Biol Med 7:48–55

    Google Scholar 

  • Lebsack TW, Fa V, Woods CC, Gruener R, Manziello AM, Pecaut MJ, Gridley DS, Stodieck LS, Ferguson VL, Deluca DJ (2010) Microarray analysis of spaceflown murine thymus tissue reveals changes in gene expression regulating stress and glucocorticoid receptors. J Cell Biochem 110(2):372–381

    PubMed  CAS  Google Scholar 

  • Macho L, Kvetnansky R, Fickova M et al (2001) Endocrine responses to space flights. J Gravit Physiol 8:117–120

    Google Scholar 

  • Mehta SK, Stowe RP, Feiveson AH, Tyring SK, Pierson DL (2000a) Reactivation and shedding of cytomegalovirus in astronauts during spaceflight. J Infect Dis 182(6):1761–1764

    Article  PubMed  CAS  Google Scholar 

  • Mehta SK, Pierson DL, Cooley H, Dubow R, Lugg D (2000b) Epstein-Barr virus reactivation associated with diminished cell-mediated immunity in Antarctic expeditioners. J Med Virol 61(2):235–240

    Article  PubMed  CAS  Google Scholar 

  • Mehta SK, Cohrs RJ, Forghani B, Zerbe G, Gilden DH, Pierson DL (2004) Stress-induced subclinical reactivation of varicella zoster virus in astronauts. J Med Virol 72(1):174–179

    Article  PubMed  Google Scholar 

  • Mills PJ, Meck JV, Waters WW, D’Aunno D, Ziegler MG (2001) Peripheral leukocyte subpopulations and catecholamine levels in astronauts as a function of mission duration. Psychosom Med 63(6):886–890

    PubMed  CAS  Google Scholar 

  • Nicogossian A, Sawin C, Huntoon C (1994) Overall physiologic response to spaceflight. In: Nicogossian A, Huntoon C, Pool S (eds) Space physiology and medicine, 3rd edn. Lea and Febiger, Philadelphia

    Google Scholar 

  • Ortega MT, Pecaut MJ, Gridley DS, Stodieck LS, Ferguson V, Chapes SK (2009) Shifts in bone marrow cell phenotypes caused by spaceflight. J Appl Physiol 106(2):548–555

    Article  PubMed  Google Scholar 

  • Payne DA, Mehta SK, Tyring SK, Stowe RP, Pierson DL (1999) Incidence of Epstein-Barr virus in astronaut saliva during spaceflight. Aviat Space Environ Med 70(12):1211–1213

    PubMed  CAS  Google Scholar 

  • Pecaut MJ, Nelson GA, Peters LL, Kostenuik PJ, Bateman TA, Morony S et al (2003) Genetic models in applied physiology: selected contribution: effects of spaceflight on immunity in the C57BL/6 mouse. I. Immune population distributions. J Appl Physiol 94(5):2085–2094

    PubMed  Google Scholar 

  • Pierson DL, Stowe RP, Phillips TM, Lugg DJ, Mehta SK (2005) Epstein-Barr virus shedding by astronauts during space flight. Brain Behav Immun 19(3):235–242

    Article  PubMed  CAS  Google Scholar 

  • Rykova MP, Antropova EN, Larina IM, BMorukov BV (2008) Humoral and cellular immunity in cosmonauts after the ISS missions. Acta Astronaut 63(7–10):697–705

    Article  Google Scholar 

  • Shimamiya T, Terada N, Hiejima Y, Wakabayashi S, Kasai H, Mohri M (2004) Effects of 10-day confinement on the immune system and psychological aspects in humans. J Appl Physiol 97:920–924

    Article  PubMed  Google Scholar 

  • Stowe RP, Sams CF, Mehta SK, Kaur I, Jones ML, Feeback DL et al (1999) Leukocyte subsets and neutrophil function after short-term spaceflight. J Leukoc Biol 65(2):179–186

    PubMed  CAS  Google Scholar 

  • Stowe RP, Mehta SK, Ferrando AA, Feeback DL, Pierson DL (2001) Immune responses and latent herpesvirus reactivation in spaceflight. Aviat Space Environ Med 72(10):884–891

    PubMed  CAS  Google Scholar 

  • Stowe RP, Sams CF, Pierson DL (2003) Effects of mission duration on neuroimmune responses in astronauts. Aviat Space Environ Med 74(12):1281–1284

    PubMed  Google Scholar 

  • Taylor GR, Neale LS, Dardano JR (1986) Immunological analyses of U.S. space shuttle crewmembers. Aviat Space Environ Med 57(3):213–217

    PubMed  CAS  Google Scholar 

  • Tingate TR, Lugg DJ, Muller HK, Stowe RP, Pierson DL (1997) Antarctic isolation: immune and viral studies. Immunol Cell Biol 75:275–283

    Article  PubMed  CAS  Google Scholar 

  • Tracey KJ (2002) The inflammatory reflex. Nature 420:853–859

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to R. Stowe and O. Ullrich as well as to J.-P. Frippiat, M. Feuerecker, B. Morukov, M. Rykova, C. Sams for their support and for kindly providing selective information to this chapter. We extend our thanks to Sandra Matzel for the support in the preparation of the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Crucian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Crucian, B., Choukèr, A. (2012). Immune System in Space: General Introduction and Observations on Stress-Sensitive Regulations. In: Chouker, A. (eds) Stress Challenges and Immunity in Space. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22272-6_9

Download citation

Publish with us

Policies and ethics