Skip to main content

Classification, Mineralogy and Industrial Potential of SiO2 Minerals and Rocks

  • Chapter
Quartz: Deposits, Mineralogy and Analytics

Part of the book series: Springer Geology ((SPRINGERGEOL))

Abstract

The various modifications of silica, especially quartz, play a central role in the composition of geological materials. Owing to their abundance and properties, SiO2 minerals and rocks have been used since the beginning of human being in different applications such as tools, weaponries, jewelleries or building materials. In modern industries, silica minerals are widely used as raw materials in high-tech applications (e.g. piezo quartz, optical devices, solar industry) or as mass products (e.g. glass sands, refractory industry, foundry industry, etc.). The occurrence of different silica minerals and the similarity in mineral composition of SiO2 rocks require a clear terminology and nomenclature of silica polymorphs and varieties as well as the different types of SiO2 rocks and their genesis. The knowledge about the development of specific properties (typomorphic properties) in dependence on the specific conditions of formation can be used both for the reconstruction of geological processes and for specific technical applications. The present work gives an overview about the state of the art of the mineralogical and petrographical nomenclature of SiO2 minerals and rocks, the analytical approach for the identification and classification of these materials, and their industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baker JM, Robinson PT (1983) EPR of a new defect in natural quartz: possibly O2. Solid State Commun 48:551–554

    Google Scholar 

  • Bambauer HU (1961) Spurenelemente und γ-Farbzentren in Quarzen aus Zerr-klüf-ten der Schwei-zer Alpen. Schweizerische Mineralogische Petrographische Mitteilungen 41:335–367

    Google Scholar 

  • Barfels T (2001) Kathodolumineszenz amorpher und kristalliner Modifikationen von SiO2 und GeO2. Ph.D thesis, University Rostock, p 168

    Google Scholar 

  • Beall GH (1994) Industrial applications of silica. Rev Mineral 29:469–506

    Google Scholar 

  • Blankenburg H-J, Götze J, Schulz H (1994) Quarzrohstoffe. Deutscher Verlag für Grundstoffindustrie, Leipzig-Stuttgart, p 296

    Google Scholar 

  • Blatt H, Middleton GV, Murray RC (1980) Origin of sedimentary rocks, 2nd edn. Prentice-Hall, Inc., Englewood Cliffs, p 782

    Google Scholar 

  • Botis S, Nokhrin SM, Pan Y, Xu Y, Bonli T (2005) Natural radiation-induced damage in quartz. I. Correlations between cathodoluminescence colors and paramagnetic defects. Can Mineral 43:1565–1580

    Google Scholar 

  • Channer DM DeR, Bray CJ, Spooner ETC (1999) Integrated cation-anion/volatile fluid inclusion analysis by gas and ion chromatography; methodology and examples. Chem Geol 154:59–82

    Google Scholar 

  • Cohen AJ (1956) Color centers in alpha-quartz. Part I. Smoky quartz. J Chem Phys 25:908–914

    Google Scholar 

  • Demars C, Pagel M, Deloule E, Blanc P (1996) Cathodoluminescence of quartz from sandstones: interpretation of the UV range by determination of trace element distributions and fluid-inclusion P-T-X properties in authogenic quartz. Am Mineral 81:891–901

    Google Scholar 

  • Dennen WH (1964) Impurities in quartz. Geol Soc Am Bull 75:241–246

    Google Scholar 

  • Dennen WH (1966) Stochiometric substitution in natural quartz. Geochim Cosmochim Acta 30:1235–1241

    Google Scholar 

  • Dennen WH (1967) Trace elements in quartz as indicators of provenance. Geol Soc Am Bull 78:125–130

    Google Scholar 

  • Ermakov NP (1950) Research on the nature of mineral-forming solutions (in Russ.). University of Kharkov Press, Kharkov, p 460

    Google Scholar 

  • Flem B, Larsen RB, Gromstvedt A, Mansfeld J (2002) In situ analysis of trace elements in quartz by using laser ablation inductively coupled plasma mass spectrometry. Chem Geol 182:237–247

    Google Scholar 

  • Friebele EJ, Griscom DL, Stapelbroek M, Weeks RA (1979) Fundamental defect centers in glass: the peroxy radical in irradiated, high-purity, fused silica. Phys Rev Lett 42:1346–1348

    Google Scholar 

  • Füchtbauer H (1988) Sediments and sedimentary rocks. Schweizerbart, Stuttgart

    Google Scholar 

  • Gemeinert M, Gaber M, Hager I, Willfahrt M, Bortschuloun D (1992) On correlation of gas-liquid-inclusion’s properties and melting behaviour of different genetic quartzes for production of transparent fused silica. Neues Jahrbuch Mineralogie, Abhandlungen 165:19–27

    Google Scholar 

  • Gerler J (1990) Geochemische untersuchungen an hydrothermalen, metamorphen, graniti-schen und pegmatitischen Quarzen und deren Flüssigkeitseinschlüssen. Ph.D thesis, University Göttingen, p 169

    Google Scholar 

  • Gerler J, Schnier C (1989) Neutron activation analysis of liquid inclusions exemplified by a quartz sample from the Ramsbeck Mine, F.R.G. Nucl Geophys 3:41–48

    Google Scholar 

  • Ghazi AM, Vanko DA, Roedder E, Seeley RC (1993) Determination of rare earth elements in fluid inclusions by inductively coupled plasma-mass spectrometry (ICP-MS). Geochim Cosmochim Acta 57:4513–4516

    Google Scholar 

  • Götze J (1997) Mineralogy and geochemistry of German high-purity quartz sands. In: Papunen H (ed) Mineral deposits: research and exploration. Balkema, Rotterdam, pp 721–724

    Google Scholar 

  • Götze J (2000) Cathodoluminescence microscopy and spectroscopy in applied mineralogy. Freiberger Forschungsheft, C 485 Geowissenschaften, p 128

    Google Scholar 

  • Götze J (2009a) Chemistry, textures and physical properties of quartz—geological interpretation and technical application. Mineral Mag 73:645–671

    Google Scholar 

  • Götze J (2009b) Cathodoluminescence microscopy and spectroscopy of lunar rocks and minerals. In: Gucsik A (ed) Cathodoluminescence and its application in the planetary sciences. Springer, Berlin, pp 87–110

    Google Scholar 

  • Götze J, Blankenburg H -J (1990) Zur Methodik der komplexen mineralogisch–geochemischen Charakterisierung von Glassanden. Sprechsaal International Ceramics & Glass Magazine 123, 8:795–803, 9:928–940, 12:1184–1189

    Google Scholar 

  • Götze J, Lewis R (1994) Distribution of REE and trace elements in size and mineral fractions of high purity quartz sands. Chem Geol 114:43–57

    Google Scholar 

  • Götze J, Plötze M (1997) Investigation of trace-element distribution in detrital quartz by electron paramagnetic resonance (EPR). Eur J Mineral 9:529–537

    Google Scholar 

  • Götze J, Zimmerle W (2000) Quartz and silica as guide to provenance in sediments and sedimentary rocks. Contributions to Sedimentary Petrology, vol 21. Schweizerbart'sche Verlagsbuchhandlung, Nägele & Obermiller, Stuttgart, 91 S

    Google Scholar 

  • Götze J, Siedel H (2007) A complex investigation of building sandstones from Saxony (Germany). Mater Charact 58:1082–1094

    Google Scholar 

  • Götze J, Plötze M, Fuchs H, Habermann D (1999) Defect structure and luminescence behaviour of agate—results of electron paramagnetic resonance (EPR) and cathodoluminescence (CL) studies. Mineral Mag 63:149–163

    Google Scholar 

  • Götze J, Plötze M, Habermann D (2001) Cathodoluminescence (CL) of quartz: origin, spectral characteristics and practical applications. Mineral Petrol 71:225–250

    Google Scholar 

  • Götze J, Plötze M, Graupner T, Hallbauer DK, Bray C (2004) Trace element incorporation into quartz: a combined study by ICP-MS, electron spin resonance, cathodoluminescence, capillary ion analysis and gas chromatography. Geochim Cosmochim Acta 68:3741–3759

    Google Scholar 

  • Götze J, Plötze M, Trautmann T (2005) Structure and luminescence characteristics of quartz from pegmatites. Am Mineral 90:13–21

    Google Scholar 

  • Götzinger MA (1990) Determination of aqueous salt solutions in fluid inclusions by infrared investigations. Neues Jahrbuch Mineralogie, Monatshefte H.1:1–12

    Google Scholar 

  • Graetsch H (1994) Structural characteristics of opaline and microcrystalline silica minerals. Rev Mineral 29:209–232

    Google Scholar 

  • Graupner T, Götze J, Kempe U, Wolf D (2000) Cathodoluminescence imaging as a tool for characterization of quartz and trapped fluid inclusions in multistage deformed mesothermal Au-quartz vein deposits: a case study from the giant Muruntau Au-ore deposit (Uzbekistan). Mineral Mag 64:1007–1016

    Google Scholar 

  • Griffiths JHE, Owen J, Ward IM (1954) Paramagnetic resonance in neutron-irradiated diamond and smoky quartz. Nature 173:439–442

    Google Scholar 

  • Griscom DL (1985) Defect structure of glasses. J Non-Cryst Solids 73:51–77

    Google Scholar 

  • Hallbauer DK (1992) The use of selected trace elements in vein quartz and quartz pebbles in identifying processes of formation and source rocks. Geologcal Society of South Africa 24th Congress, Bloemfontein, Abstracts, 157–159

    Google Scholar 

  • Hallbauer DK (1997) The application of capillary ion analysis to the geochemistry of natural aqueous fluids and in particular to the analysis of fluid inclusions in minerals. In: Proceedings of the 30th International Geological Congress, vol 9, pp 409–424

    Google Scholar 

  • Hanson B, Delano JW, Lindstrom DJ (1996) High-precision analysis of hydrous rhyolitic glass inclusions in quartz phenocrysts using the electron microprobe and INAA. Am Mineral 81:1249–1262

    Google Scholar 

  • Heany PJ, Prewitt CT, Gibbs GV (1994) Silica—physical behaviour, geochemistry and materials application. Reviews in Mineralogy, vol 29. Mineralogical Society of America, Washington, p 606

    Google Scholar 

  • Heynke U, Leeder O, Schulz H (1992) On distinguishing quartz of hydro-thermal or meta-morphogenic origin in different monomineralic veins in the eastern part of Germany. Mineral Petrol 46:315–329

    Google Scholar 

  • Houseknecht DW (1991) Use of cathodoluminescence petrography for understanding compaction, quartz cementation, and porosity in sandstones. In: Baker CE, Kopp OC (eds) Luminescence microscopy: quantitative and qualitative aspects. SEPM, Dallas, pp 59–66

    Google Scholar 

  • Ioannou SE, Götze J, Weiershäuser L, Zubowski SM, Spooner ETC (2003) Cathodoluminescence characteristics of Archean VMS-related quartz: Noranda, Ben Nevis, and Matagami districs, Abitibi Subprovince, Canada. G3 Online Publication, 5(2), doi:10.1029/2003GC000613

    Google Scholar 

  • IOTA® (2005) IOTA® high-purity quartz. http://www.iotaquartz.com/welcome.html. Accessed 20 May 2005

  • Jourdan A-L (2008) Elemental and isotopic zoning in natural alpine quartz. Ph.D thesis, University Lausanne

    Google Scholar 

  • Jung L (1992) High purity natural quartz. Part I: high purity natural quartz for industrial use. Part II: High purity natural quartz markets for suppliers and users. Quartz Technology. Liberty Corner, New Jersey, p 657

    Google Scholar 

  • Klemm W (1986) Beiträge zur analytischen Geochemie von Gas-Flüssigkeits-Einschlüssen in hydrothermalen Mineralen. Habilitation thesis, TU Bergakademie Freiberg

    Google Scholar 

  • Knauth LP (1994) Petrogenesis of chert. In: Heaney PJ, Prewitt CT, Gibbs GV (eds) Silica—physical behaviour, geochemistry and materials applications. Reviews in Mineralogy, vol 29. Mineralogical Society of America, Washington, pp 233–258

    Google Scholar 

  • Komuro K, Horikawa Y, Toyoda S (2002) Development of radiation-damage halos in low-quartz: cathodoluminescence measurement after He+ ion implantation. Mineral Petrol 76:261–266

    Google Scholar 

  • Konhauser K (2007) Introduction to geomicrobiology. Blackwell Publishing, Malden, p 425

    Google Scholar 

  • Kostov RI, Bershov LV (1987) Systematics of paramagnetic electron-hole centres in natural quartz (in Russian.). Izvestiya Akademii nauk USSR, Seria Geologia 7:80–87

    Google Scholar 

  • Kostova B, Pettke T, Driesner T, Petrov P, Heinrich CA (2004) LAICP-MS study of fluid inclusions in quartz from the Yuzhna Petrovitsa deposit, Madan ore field, Bulgaria. Swiss Bull Mineral Petrol 84:25–36

    Google Scholar 

  • Krickl R, Nasdala L, Götze J, Grambole D (2008) Alteration of SiO2 caused by natural and artificial alpha-irradiation. Eur J Mineral 20:517–522

    Google Scholar 

  • Larsen RB, Polvé M, Juve G (2000) Granite pegmatite quartz from Evje-Iveland: trace element chemistry and implications for high-purity quartz formation. Norges Geologiske Undersøkelse Bulletin 436:57–65

    Google Scholar 

  • Larsen RB, Henderson I, Ihlen PM, Jacamon F (2004) Distribution and petrogenetic behaviour of trace elements in granitic pegmatite quartz from South Norway. Contrib Mineral Petrol 147:615–628

    Google Scholar 

  • Larsen RB, Jacomon F, Kronz A (2009) Trace element chemistry and textures of quartz during the magmatic hydrothermal transition of Oslo Rift granites. Mineral Mag 73:691–705

    Google Scholar 

  • Leeder O, Thomas R, Klemm W (1987) Einschlüsse in Mineralen. VEB Deutscher Grundstoffverlag, Leipzig

    Google Scholar 

  • Lehmann K, Berger A, Götte T, Ramseyer K, Wiedenbeck M (2009) Growth related zonations in authigenic and hydrothermal quartz characterized by SIMS-, EPMA-, SEM-CL- and SEM-CC-imaging. Mineral Mag 73:633–644

    Google Scholar 

  • Lyakhovich VV (1972) Trace elements in rock-forming minerals of granitoides (in Russian). Nedra, Moscow, p 200

    Google Scholar 

  • Mackey JH (1963) EPR study of impurity-related color centers in germanium-doped quartz. J Chem Phys 39:74–83

    Google Scholar 

  • Meunier JD, Sellier E, Pagel M (1990) Radiation-damage rims in quartz from uranium-bearing sandstones. J Sediment Petrol 60:53–58

    Google Scholar 

  • Milliken KL, Laubach SE (2000) Brittle deformation in sandstone diagenesis as revealed by scanned cathodoluminescence imaging with application to characterization of fractured reservoirs. In: Pagel M, Barbin V, Blanc P, Ohnenstetter D (eds) Cathodoluminescence in geosciences. Springer, Berlin, pp 225–243

    Google Scholar 

  • Mineeva RM, Bershov LV, Petrov I (1991) EPR of surface-bound Fe3+ ions in polycrystalline quartz (in Russian). Dokladi Akademii Nauk SSSR 321:368–372

    Google Scholar 

  • Miyoshi N, Yamaguchi Y, Makino K (2005) Successive zoning of Al and H in hydrothermal vein quartz. Am Mineral 90:310–315

    Google Scholar 

  • Monecke T, Kempe U, Petersen S, Götze J, Herzig P, Wolf D (1999) Trace element characteristics of quartz from the TAG hydrothermal mound (Mid-Atlantic Ridge at 26E08’N). In: Mineral deposits: processes to processing. Balkema, Rotterdam, pp 551–554

    Google Scholar 

  • Monecke T, Bombach G, Klemm W, Kempe U, Götze J, Wolf D (2000) Determination of trace elements in quartz standard UNS-SpS and in natural quartz by ICP-MS. Geostand Newsl 24(1):73–81

    Google Scholar 

  • Monecke T, Kempe U, Götze J (2002) Genetic significance of the trace element content in metamorphic and hydrothermal quartz: A reconnaissance study. Earth Planet Sci Lett 202:709–724

    Google Scholar 

  • Mosebach R (1955) Neue Ergebnisse auf dem Gebiet der hydrothermalen Forschung. Chemiker Zeitung 79:583–599

    Google Scholar 

  • Müller A, Koch-Müller M (2009) Hydrogen speciation and trace element contents of igneous, hydrothermal and metamorphic quartz from Norway. Mineral Mag 73:569–584

    Google Scholar 

  • Müller A, Seltmann R, Behr HJ (2000) Application of cathodoluminescence to magmatic quartz in tin granite—case study from the Schellerhau Granite Complex, Eastern Ertgebirge, Germany. Mineralium Deposita 35:169–185

    Google Scholar 

  • Müller A, Kronz A, Breiter K (2002) Trace elements and growth patterns in quartz: a fingerprint of the evolution of the subvolcanic Podlesi Granite System (Krušne Hory, Czech Republic). Bull Czech Geol Surv 77(2):135–145

    Google Scholar 

  • Müller A, Rene M, Behr H-J, Kronz A (2003a) Trace elements and cathodoluminescence of igneous quartz in topaz granites from the Hub Stock (Slavkovský Les Mts., Czech Republic). Mineral Petrol 79:167–191

    Google Scholar 

  • Müller A, Wiedenbeck M, Van den Kerkhof AM, Kronz A, Simon K (2003b) Trace elements in quartz—a combined electron microprobe, secondary ion mass spectrometry, laser-ablation ICP-MS, and cathodoluminescence study. Eur J Mineral 15:747–763

    Google Scholar 

  • Müller A, Ihlen PM, Kronz A (2005) Potential resources of quartz and feldspar raw material in Sørland IV: relationships between quartz, feldspar and mica chemistry and pegmatite type. Norwegian Geological Survey Report 2005.075, Trondheim, p 94

    Google Scholar 

  • Müller A, Ihlen PM, Wanvik JE, Flem B (2007) High-purity quartz mineralisation in kyanite quartzites, Norway. Mineralium Deposita 42:523–535

    Google Scholar 

  • Müller A, Ihlen PM, Kronz A (2008) Quartz chemistry in polygeneration Sveconorwegian pegmatites, Froland, Norway. Eur J Mineral 20:447–464

    Google Scholar 

  • Nacken R (1950) Hydrothermale Mineralsynthese zur Züchtung von Quarzkristallen. Chemiker Zeitung 74:745–749

    Google Scholar 

  • Nishikawa H, Watanabe E, Ito D, Ohki Y (1994) Decay kinetics of the 4.4 eV photoluminescence associated with the two states of oxygen-deficient-type defect in amorphous SiO2. Phys Rev Lett 72:2101–2104

    Google Scholar 

  • Norwegian Crystallites AS (2006) Norwegian crystallites AS-products crystal quartz analyses. http://www.norcryst.no. Accessed 20 Sep 2006

  • O’Brien MCM (1955) The structure of the colour centres in smoky quartz. In: Proceedings of the royal society, A 231:404–414

    Google Scholar 

  • Owen MR (1988) Radiation-damage halos in quartz. Geology 16:529–532

    Google Scholar 

  • Pan Y, Nilges MJ, Mashkovtsev RI (2009) Radiation-induced defects in quartz: a multifrequency EPR study and DFT modelling of new peroxy radicals. Mineral Mag 73:519–536

    Google Scholar 

  • Perny B, Eberhardt P, Ramseyer K, Mullis J (1992) Microdistribution of aluminium, lithium and sodium in quartz: possible causes and correlation with short-lived cathodoluminescence. Am Mineral 77:534–544

    Google Scholar 

  • Pettijohn FJ, Potter PE, Siever R (1987) Sand and Sandstone. Springer, New York, p 553

    Google Scholar 

  • Plötze M (1995) EPR investigations of quartz, scheelite and fluorite from high-thermal trace-metal mineralization (in German). Ph.D thesis, TU Bergakademie Freiberg, p 141

    Google Scholar 

  • Plötze M, Wolf D (1996) EPR- and TL spektren von quarz: bestrahlungsabhängigkeit der [TiO4/Li+]0-Zentren. European Journal of Mineralogy 8, Bh. 1:217

    Google Scholar 

  • Rakov LT, Milovidova ND, Kuvshinova KA, Moiseev BM (1985) EPR investigations of germanium centers in natural polycrystalline quartz (in Russian). Geokhimiya 9:1339–1344

    Google Scholar 

  • Ramseyer K, Mullis J (1990) Factors influencing short-lived blue cathodoluminescence of alpha-quartz. Am Mineral 75:791–800

    Google Scholar 

  • Ramseyer K, Baumann J, Matter A, Mullis J (1988) Cathodoluminescence colours of alpha-quartz. Mineral Mag 52:669–677

    Google Scholar 

  • Ramseyer K, AlDahan AA, Collini B, Landström O (1992) Petrological modifications in granitic rocks from the Siljan impact structure: evidence from cathodoluminescence. Tectonophysics 216:195–204

    Google Scholar 

  • Richter DK, Götte Th, Götze J, Neuser RD (2003) Progress in application of cathodoluminescence (CL) in sedimentary geology. Mineral Petrol 79:127–166

    Google Scholar 

  • Rinneberg H, Weil JA (1972) EPR studies of Ti3+-H+ centers in X-irradiated alpha-quartz. J Chem Phys 56:2019–2028

    Google Scholar 

  • Rink WJ, Rendell H, Marseglia EA, Luff BJ, Townsend PD (1993) Thermoluminescence spectra of igneous quartz and hydrothermal vein quartz. Phys Chem Mineral 20:353–361

    Google Scholar 

  • Roedder E (1984) Fluid inclusions. Rev Mineral 12:1–645

    Google Scholar 

  • Rösler HJ (1981) Lehrbuch der Mineralogie. 2. Aufl., VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, p 833

    Google Scholar 

  • Rusk BG, Reed MH, Dilles JH, Kent AJR (2006) Intensity of quartz cathodoluminescence and trace-element content in quartz from the porphyry copper deposit at Butte, Montana. Am Mineral 91:1300–1312

    Google Scholar 

  • Rusk B, Lowers HA, Reed MH (2008) Trace elements in hydrothermal quartz: relationships to cathodoluminescent textures and insights into vein formation. Geology 36:547–550

    Google Scholar 

  • Rykart R (1995) Quarz-Monographie. 2. Aufl., Ott Verlag Thun, p 462

    Google Scholar 

  • Shepherd, Rankin TJ, Alderton AH, Alderton DHM (1985) A practical guide to fluid inclusion studies. Blackie & Sons, Glasgow

    Google Scholar 

  • Sippel RF (1968) Sandstone petrology evidence from luminescence petrography. J Sed Petrol vol 38, pp 530–554

    Google Scholar 

  • Sippel RF (1971) Luminescence petrography of the Apollo 12 rocks and comperative features in terrestrial rocks and meteorites. In: Proceedings of the second lunar science conference, vol 1, pp 247–263

    Google Scholar 

  • Stegger P, Lehmann G (1989) The structures of three centers of trivalent iron in alpha-quartz. Phys Chem Mineral 16:401–407

    Google Scholar 

  • Stenina NG, Bazarov LS, Shcherbakova MY, Mashkovtsev RI (1984) Structural state and diffusion of impurities in natural quartz of different genesis. Phys Chem Mineral 10:180–186

    Google Scholar 

  • Stevens-Kalceff MA (2009) Cathodoluminescence microcharacterization of point defects in α-quartz. Mineral Mag 73:585–606

    Google Scholar 

  • Stevens-Kalceff MA, Phillips MR, Moon AR, Kalceff W (2000) Cathodoluminescence microcharacterisation of silicon dioxide polymorphs. In: Pagel M, Barbin V, Blanc ,P, Ohnenstetter D (eds) Cathodoluminescence in geosciences. Springer, Berlin, pp 193–224

    Google Scholar 

  • Strunz H, Tennyson C (1982) Mineralogical Tables. Akademische Verlagsgesellschaft Geest & Portig, Leipzig, p 621

    Google Scholar 

  • Summerfield MA (1979) Origin and palaeoenvironmental interpretation of sarsens. Nature 281:137–139

    Google Scholar 

  • Summerfield MA (1983) Silcrete. In: Goudie AS, Pye K (eds) Chemical sediments and geomorphology. Academic Press, San Diego, pp 59–91

    Google Scholar 

  • Suttner L, Leininger RK (1972) Comparison of the trace element content of plutonic, volcanic and metamorphic quartz from Southwestern Montana. Geol Soc Am Bull 83:1855–1862

    Google Scholar 

  • Van den Kerkhof AM, Hein UF (2001) Fluid inclusion petrography. Lithos 55:27–47

    Google Scholar 

  • Van den Kerkhof AM, Kronz A, Simon K, Scherer T (2004) Fluid-controlled quartz recovery in granulite as revealed by cathodoluminescnec and trace element analysis (Bamble sector, Norway). Contrib Mineral Petrol 146:637–652

    Google Scholar 

  • Walenczak Z (1969) Geochemistry of minor elements dispersed in quartz. Archi-wum Mi-nera-lo-giczne 28:189–335

    Google Scholar 

  • Walther H (1993) Silcretes in Germany and Australia. Ph.D thesis, TU Bergakademie Freiberg, p 126

    Google Scholar 

  • Weil JA (1984) A review of electron spin spectroscopy and its application to the study of paramagnetic defects in crystalline quartz. Phys Chem Mineral 10:149–165

    Google Scholar 

  • Weil JA (1993) A review of the EPR spectroscopy of the point defects in α-quartz: the decade 1982–1992. In: Helms CR, Deal BE (eds) Physics and Chemistry of SiO2 and the Si-SiO interface 2. Plenum Press, New York, pp 131–144

    Google Scholar 

  • Wopfner H (1978) Silcretes of northern South Australia and adjacent regions. In: Langford-Smith T (ed) Silcrete in Australia, Armidale, pp 93–141

    Google Scholar 

  • Wopfner H (1983) Environment of silcrete formation: a comparison of examples from Australia and the Cologne Embayment, West Germany. In: Wilson RCL (ed) Residual deposits: surface related weathering processes and materials. Geological Society of London Special Publications 11, pp 151–158

    Google Scholar 

  • Wright PM, Weil JA, Buch T, Anderson JH (1963) Titanium colour centers in rose quartz. Nature 197:246–248

    Google Scholar 

  • Wünsch K (1987) Mineralogische, geochemische und strukturelle Untersuchungen an metamorphogenen Quarzmobilisaten. Ph.D thesis, TU Bergakademie Freiberg, Germany

    Google Scholar 

  • Zinkernagel U (1978) Cathodoluminescence of quartz and its application to sandstone petrology. Contributions to Sedimentology, 8. Schweizerbart’sche Verlagsbuchhandlung, Nägele and Obermiller, Stuttgart, p 69

    Google Scholar 

Download references

Acknowledgments

I gratefully acknowledge the comments of K. Ramseyer (Bern) and an anonymous reviewer, which helped to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Götze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Götze, J. (2012). Classification, Mineralogy and Industrial Potential of SiO2 Minerals and Rocks. In: Götze, J., Möckel, R. (eds) Quartz: Deposits, Mineralogy and Analytics. Springer Geology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22161-3_1

Download citation

Publish with us

Policies and ethics