Skip to main content

Activated Fibers: Fiber-Centered Activation Detection in Task-Based FMRI

  • Conference paper
Information Processing in Medical Imaging (IPMI 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6801))

Abstract

In task-based fMRI, the generalized linear model (GLM) is widely used to detect activated brain regions. A fundamental assumption in the GLM model for fMRI activation detection is that the brain’s response, represented by the blood-oxygenation level dependent (BOLD) signals of volumetric voxels, follows the shape of stimulus paradigm. Based on this same assumption, we use the dynamic functional connectivity (DFC) curves between two ends of a white matter fiber, instead of the BOLD signal, to represent the brain’s response, and apply the GLM to detect Activated Fibers (AFs). Our rational is that brain regions connected by white matter fibers tend to be more synchronized during stimulus intervals than during baseline intervals. Therefore, the DFC curves for fibers connecting active brain regions should be positively correlated with the stimulus paradigm, which is verified by our extensive experiments using multimodal task-based fMRI and diffusion tensor imaging (DTI) data. Our results demonstrate that the detected AFs connect not only most of the activated brain regions detected via traditional voxel-based GLM method, but also many other brain regions, suggesting that the voxel-based GLM method may be too conservative in detecting activated brain regions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Basser, P.J., Mattiello, J., LeBihan, D.: Estimation of the effective self-diffusion tensor from the NMR spin-echo. Journal of Magnetic Resonance Series B 103(3), 247–254 (1994)

    Article  Google Scholar 

  2. Biswal, B.B., Mennes, M., et al.: M Toward discovery science of human brain function. PNAS 107(10), 4734–4739 (2010)

    Article  Google Scholar 

  3. Fox, M.D., Raichle, M.E.: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imagin. Nat. Rev. Neurosci. 8(9), 700–711 (2007)

    Article  Google Scholar 

  4. Friston, K.: Modalities, modes, and models in functional neuroimaging. Science 326(5951), 399–403 (2009)

    Article  Google Scholar 

  5. Hu, X., Deng, F., Li, K., et al.: Bridging Low-level Features and High-level Semantics via fMRI Brain Imaging for Video Classification. ACM Multimedia (2010)

    Google Scholar 

  6. Faraco, C.C., Smith, D., Langley, J., et al.: Mapping the Working Memory Network using the OSPAN Task. NeuroImage 47(suppl. 1), S105 (2009)

    Article  Google Scholar 

  7. Li, K., Guo, L., Li, G., et al.: Cortical surface based identification of brain networks using high spatial resolution resting state FMRI data. In: IEEE International Conference on Biomedical Imaging: from Nano to Macro, Rotterdam, Netherlands, pp. 656–659 (2010)

    Google Scholar 

  8. Lv, J., Guo, L., Hu, X., Zhang, T., Li, K., Zhang, D., Yang, J., Liu, T.: Fiber-centered analysis of brain connectivities using DTI and resting state FMRI data. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6362, pp. 143–150. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Liu, T., Li, H., Wong, K., et al.: Brain tissue segmentation based on DTI data. NeuroImage 38(1), 114–123 (2007)

    Article  Google Scholar 

  10. Liu, T., et al.: Deformable Registration of Cortical Structures via Hybrid Volumetric and Surface Warping. NeuroImage 22(4), 1790–1801 (2004)

    Article  Google Scholar 

  11. MedINRIA, http://www-sop.inria.fr/asclepios/software/MedINRIA/

  12. Zhang, D., et al.: Automatic cortical surface parcellation based on fiber density information. In: IEEE International Symposium on Biomedical Imaging (ISBI), Rotterdam, pp. 1133–1136 (2010)

    Google Scholar 

  13. Aviv, M., et al.: Cluster analysis of resting-state fMRI time series. NeuroImage 45, 1117–1125 (2009)

    Article  Google Scholar 

  14. Honey, C.J., et al.: Predicting human resting-state functional connectivity from structural connectivity. PNAS 106(6), 2035–2040 (2009)

    Article  Google Scholar 

  15. Worsley, K.J., et al.: A unified statistical approach for determining significant voxels in images of cerebral activation. Human Brain Mapping 4, 58–73 (1996)

    Article  Google Scholar 

  16. Christopher, R., Genovese, N.A., Lazar, T.E.: Nichols: Thresholding of Statistical Maps in Functional Neuroimaging Using the False Discovery Rate. NeuroImage 15, 870–878 (2002)

    Article  Google Scholar 

  17. Friston, K.J., et al.: Statistical Parametric Maps in Functional Imaging: A General Linear Approach. Human Brain Mapping 2, 189–210 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lv, J. et al. (2011). Activated Fibers: Fiber-Centered Activation Detection in Task-Based FMRI. In: Székely, G., Hahn, H.K. (eds) Information Processing in Medical Imaging. IPMI 2011. Lecture Notes in Computer Science, vol 6801. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22092-0_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22092-0_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22091-3

  • Online ISBN: 978-3-642-22092-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics