Skip to main content

Approximations of the Diffeomorphic Metric and Their Applications in Shape Learning

  • Conference paper
Information Processing in Medical Imaging (IPMI 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6801))

Abstract

In neuroimaging studies based on anatomical shapes, it is well-known that the dimensionality of the shape information is much higher than the number of subjects available. A major challenge in shape analysis is to develop a dimensionality reduction approach that is able to efficiently characterize anatomical variations in a low-dimensional space. For this, there is a need to characterize shape variations among individuals for N given subjects. Therefore, one would need to calculate \(N \choose 2\) mappings between any two shapes and obtain their distance matrix. In this paper, we propose a method that reduces the computational burden to N mappings. This is made possible by making use of the first- and second-order approximations of the metric distance between two brain structural shapes in a diffeomorphic metric space. We directly derive these approximations based on the so-called conservation law of momentum, i.e., the diffeomorphic transformation acting on anatomical shapes along the geodesic is completely determined by its velocity at the origin of a fixed template. This allows for estimating morphological variation of two shapes through the first- and second-order approximations of the initial velocity in the tangent space of the diffeomorphisms at the template. We also introduce an alternative representation of these approximations through the initial momentum, i.e., a linear transformation of the initial velocity, and provide a simple computational algorithm for the matrix of the diffeomorphic metric. We employ this algorithm to compute the distance matrix of hippocampal shapes among an aging population used in a dimensionality reduction analysis, namely, ISOMAP. Our results demonstrate that the first- and second-order approximations are sufficient to characterize shape variations when compared to the diffeomorphic metric constructed through \(N \choose 2\) mappings in ISOMAP analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Apostolova, L.G., Dinov, I.D., Dutton, R.A., Hayashi, K.M., Toga, A.W., Cummings, J.L., Thompson, P.M.: 3D comparison of hippocampal atrophy in amnestic mild cognitive impairment and alzheimer’s disease. Brain 129, 2867–2873 (2006)

    Article  Google Scholar 

  2. Ashburner, J.: A fast diffeomorphic image registration algorithm. Neuroimage 38, 95–113 (2007)

    Article  Google Scholar 

  3. Avants, B., Gee, J.C.: Geodesic estimation for large deformation anatomical shape and intensity averaging. NeuroImage 23, 139–150 (2004)

    Article  Google Scholar 

  4. Dupuis, P., Grenander, U., Miller, M.I.: Variational problems on flows of diffeomorphisms for image matching. Quart. App. Math. 56, 587–600 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. van Essen, D.: A Population-Average, Landmark- and Surface-based (PALS) atlas of human cerebral cortex. NeuroImage 28, 635–662 (2005)

    Article  Google Scholar 

  6. Fischl, B., Salat, D.H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., van der Kouwe, A., Killiany, R., Kennedy, D., Klaveness, S., Montillo, A., Makris, N., Rosen, B., Dale, A.M.: Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron 33, 341–355 (2002)

    Article  Google Scholar 

  7. Gerber, S., Tasdizen, T., Fletcher, P.T., Joshi, S., Whitaker, R.: Manifold modeling for brain population analysis. Medical Image Analysis 14(5), 643–653 (2010)

    Article  Google Scholar 

  8. Glaunès, J., Qiu, A., Miller, M., Younes, L.: Large deformation diffeomorphic metric curve mapping. IJCV 80(3), 317–336 (2008)

    Article  Google Scholar 

  9. Grenander, U., Miller, M.I.: Computational anatomy: An emerging discipline. Quart. App. Math. 56(4), 617–694 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Guimond, A., Roche, A., Ayache, N., Meunier, J.: Three-Dimensional Multimodal Brain Warping Using the Demons Algorithm and Adaptive Intensity Corrections. IEEE TMI 20(1), 58–69 (2001)

    Google Scholar 

  11. Jernigan, T.L., Archibald, S.L., Fennema-Notestine, C., Gamst, A.C., Stout, J.C., Bonner, J., Hesselink, J.R.: Effects of age on tissues and regions of the cerebrum and cerebellum. Neurobiol Aging 22(4), 581–594 (2001)

    Article  Google Scholar 

  12. Lao, Z., Shen, D., Xue, Z., Karacali, B., Resnick, S.M., Davatzikos, C.: Morphological classification of brains via high-dimensional shape transformations and machine learning methods. NeuroImage 21(1), 46–57 (2004)

    Article  Google Scholar 

  13. Marcus, D.S., Fotenos, A.F., Csernansky, J.G., Morris, J.C., Buckner, R.L.: Open access series of imaging studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. J. Cog. Neurosci. 19, 1498–1507 (2007)

    Article  Google Scholar 

  14. Miller, M.I., Qiu, A.: The emerging discipline of computational functional anatomy. Neuroimage 45, S16–S39 (2009)

    Article  Google Scholar 

  15. Miller, M.I., Priebe, C.E., Qiu, A., Fischl, B., Kolasny, A., Brown, T., Park, Y., Ratnanather, J.T., Busa, E., Jovicich, J., Yu, P., Dickerson, B.C., Buckner, R.L.: Collaborative computational anatomy: An MRI morphometry study of the human brain via diffeomorphic metric mapping. Human Brain Mapping 30(7), 2132–2141 (2009)

    Article  Google Scholar 

  16. Miller, M.I., Trouvé, A., Younes, L.: Geodesic shooting for computational anatomy. JMIV 24, 209–228 (2006)

    Article  MathSciNet  Google Scholar 

  17. Qiu, A., Miller, M.I.: Multi-structure network shape analysis via normal surface momentum maps. NeuroImage 42(4), 1430–1438 (2008)

    Article  Google Scholar 

  18. Qiu, A., Brown, T., Fischl, B., Ma, J., Miller, M.I.: Atlas generation for subcortical and ventricular structures with its applications in shape analysis. IEEE TIP 19(6), 1539–1547 (2010)

    MathSciNet  Google Scholar 

  19. Qiu, A., Fennema-Notestine, C., Dale, A.M., Miller, M.I.: Regional shape abnormalities in mild cognitive impairment and Alzheimer’s disease. Neuroimage 45, 656–661 (2009)

    Article  Google Scholar 

  20. Robbins, S., Evans, A.C., Collins, D.L., Whitesides, S.: Tuning and comparing spatial normalization methods. Med. Image Anal. 8(3), 311–323 (2004)

    Article  Google Scholar 

  21. Tenenbaum, J.B., Silva, V.d., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Article  Google Scholar 

  22. Thompson, P.M., Schwartz, C., Lin, R.T., Khan, A.A., Toga, A.W.: Three–dimensional statistical analysis of sulcal variability in the human brain. J. Neurosci. 16(13), 4261–4274 (1996)

    Google Scholar 

  23. Trouvé, A.: Diffeomorphism groups and pattern matching in image analysis. IJCV 28(3), 213–221 (1998)

    Article  MathSciNet  Google Scholar 

  24. Vaillant, M., Qiu, A., Glaunès, J., Miller, M.I.: Diffeomorphic metric surface mapping in subregion of the superior temporal gyrus. NeuroImage 34, 1149–1159 (2007)

    Article  Google Scholar 

  25. Wojtyński, W.: One parameter subgroups and B-C-H formula. Stud. Math. 111, 163–185 (1994)

    MathSciNet  MATH  Google Scholar 

  26. Yang, X., Goh, A., Qiu, A.: Locally Linear Diffeomorphic Metric Embedding (LLDME) for surface-based anatomical shape modeling. NeuroImage 56(1), 149–161 (2011)

    Article  Google Scholar 

  27. Younes, L.: Shapes and Diffeomorphism. Springer, Heidelberg (2010)

    Book  MATH  Google Scholar 

  28. Zhong, J., Qiu, A.: Multi-manifold diffeomorphic metric mapping for aligning cortical hemispheric surfaces. Neuroimage 49, 355–365 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yang, X., Goh, A., Qiu, A. (2011). Approximations of the Diffeomorphic Metric and Their Applications in Shape Learning. In: Székely, G., Hahn, H.K. (eds) Information Processing in Medical Imaging. IPMI 2011. Lecture Notes in Computer Science, vol 6801. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22092-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22092-0_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22091-3

  • Online ISBN: 978-3-642-22092-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics