Skip to main content

Fragile X Mental Retardation Protein (FMRP) and the Spinal Sensory System

  • Chapter
  • First Online:
Modeling Fragile X Syndrome

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 54))

Abstract

The purpose of this chapter is to discuss the role of the fragile X mental retardation protein (FMRP) in the spinal sensory system and the potential for use of the mouse model of fragile X syndrome to better understand some aspects of the human syndrome as well as advance knowledge in other areas of investigation, such as pain amplification, an important aspect of clinical pain disorders. We describe how the Fmr1 knockout mouse can be used to better understand the role of Fmrp in axons using cultures of sensory neurons and using manipulations to these neurons in vivo. We also discuss the established evidence for a role of Fmrp in nociceptive sensitization and how this evidence relates to an emerging role of translation control as a key process in pain amplification. Finally, we explore opportunities centered on the Fmr1 KO mouse for gaining further insight into the role of translation control in pain amplification and how this model may be used to identify novel therapeutic targets. We conclude that the study of the spinal sensory system in the Fmr1 KO mouse presents several unique prospects for gaining better insight into the human disorder and other clinical issues, such as chronic pain disorders, that affect millions of people worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adwanikar H, Karim F, Gereau RWt (2004) Inflammation persistently enhances nocifensive behaviors mediated by spinal group I mGluRs through sustained ERK activation. Pain 111:125–135

    PubMed  CAS  Google Scholar 

  • Akins MR, Berk-Rauch HE, Fallon JR (2009) Presynaptic translation: stepping out of the postsynaptic shadow. Front Neural Circuits 3:17

    PubMed  Google Scholar 

  • Antar LN, Li C, Zhang H, Carroll RC, Bassell GJ (2006) Local functions for FMRP in axon growth cone motility and activity-dependent regulation of filopodia and spine synapses. Mol Cell Neurosci 32(1–2):37–48

    PubMed  CAS  Google Scholar 

  • Aronov S, Aranda G, Behar L, Ginzburg I (2001) Axonal tau mRNA localization coincides with tau protein in living neuronal cells and depends on axonal targeting signal. J Neurosci 21:6577–6587

    PubMed  CAS  Google Scholar 

  • Asiedu MN, Tillu DV, Melemedjian OK, Shy A, Sanoja R, Bodell B, Ghosh S, Porreca F, Price TJ (2011) Spinal protein kinase m zeta underlies the maintenance mechanism of persistent nociceptive sensitization. J Neurosci 31:6646–6653

    PubMed  CAS  Google Scholar 

  • Azkue JJ, Liu X-G, Zimmermann M, Sandkühler J (2003) Induction of long-term potentiation of C fibre-evoked spinal field potentials requires recruitment of group I, but not group II/III metabotropic glutamate receptors. Pain 106:373–379

    PubMed  CAS  Google Scholar 

  • Bagni C, Greenough WT (2005) From mRNP trafficking to spine dysmorphogenesis: the roots of fragile X syndrome. Nat Rev Neurosci 6:376–387

    PubMed  CAS  Google Scholar 

  • Baron R (2006) Mechanisms of disease: neuropathic pain – a clinical perspective. Nat Clin Pract Neurol 2:95–106

    PubMed  Google Scholar 

  • Bassell GJ, Warren ST (2008) Fragile X syndrome: loss of local mRNA regulation alters synaptic development and function. Neuron 60:201–214

    PubMed  CAS  Google Scholar 

  • Bassell GJ, Zhang H, Byrd AL, Femino AM, Singer RH, Taneja KL, Lifshitz LM, Herman IM, Kosik KS (1998) Sorting of beta-actin mRNA and protein to neurites and growth cones in culture. J Neurosci 18:251–265

    PubMed  CAS  Google Scholar 

  • Bear MF, Huber KM, Warren ST (2004) The mGluR theory of fragile X mental retardation. Trends Neurosci 27:370–377

    PubMed  CAS  Google Scholar 

  • Berry-Kravis E, Goetz CG, Leehey MA et al (2007) Neuropathic features in fragile X premutation carriers. Am J Med Genet A 143:19–26

    PubMed  Google Scholar 

  • Bhave G, Karim F, Carlton SM, Gereau RWt (2001) Peripheral group I metabotropic glutamate receptors modulate nociception in mice. Nat Neurosci 4:417–423

    PubMed  CAS  Google Scholar 

  • Brega AG, Reynolds A, Bennett RE, Leehey MA, Bounds LS, Cogswell JB, Hagerman RJ, Hagerman PJ, Grigsby J (2009) Functional status of men with the fragile X premutation, with and without the tremor/ataxia syndrome (FXTAS). Int J Geriatr Psychiatry 24:1101–1109

    PubMed  Google Scholar 

  • Brittis PA, Lu Q, Flanagan JG (2002) Axonal protein synthesis provides a mechanism for localized regulation at an intermediate target. Cell 110:223–235

    PubMed  CAS  Google Scholar 

  • Brown V, Jin P, Ceman S et al (2001) Microarray identification of FMRP-associated brain mRNAs and altered mRNA translational profiles in fragile X syndrome. Cell 107:477–487

    PubMed  CAS  Google Scholar 

  • Campbell JN, Meyer RA (2006) Mechanisms of neuropathic pain. Neuron 52:77–92

    PubMed  CAS  Google Scholar 

  • Caterina MJ, Julius D (2001) The vanilloid receptor: a molecular gateway to the pain pathway. Annu Rev Neurosci 24:487–517

    PubMed  CAS  Google Scholar 

  • Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824

    PubMed  CAS  Google Scholar 

  • Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR, Koltzenburg M, Basbaum AI, Julius D (2000) Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288:306–313

    PubMed  CAS  Google Scholar 

  • Centonze D, Rossi S, Mercaldo V et al (2008) Abnormal striatal GABA transmission in the mouse model for the fragile X syndrome. Biolog Psychiatry 63:963–973

    CAS  Google Scholar 

  • Chou AK, Yang LC, Wu PC, Wong WT, Liu GS, Chen JT, Howng SL, Tai MH (2005) Intrathecal gene delivery of glial cell line-derived neurotrophic factor ameliorated paraplegia in rats after spinal ischemia. Brain Res Mol Brain Res 133:198–207

    PubMed  CAS  Google Scholar 

  • Christie SB, Akins MR, Schwob JE, Fallon JR (2009) The FXG: a presynaptic fragile X granule expressed in a subset of developing brain circuits. J Neurosci 29:1514–1524

    PubMed  CAS  Google Scholar 

  • Coffey SM, Cook K, Tartaglia N et al (2008) Expanded clinical phenotype of women with the FMR1 premutation. Am J Med Genet A 146A:1009–1016

    PubMed  Google Scholar 

  • Comery TA, Harris JB, Willems PJ, Oostra BA, Irwin SA, Weiler IJ, Greenough WT (1997) Abnormal dendritic spines in fragile X knockout mice: maturation and pruning deficits. Proc Natl Acad Sci U S A 94:5401–5404

    PubMed  CAS  Google Scholar 

  • Consorthium TD-BFX (1994) Fmr1 knockout mice: a model to study fragile X mental retardation. The Dutch-Belgian Fragile X Consortium. Cell 78:23–33

    Google Scholar 

  • Darnell JC, Jensen KB, Jin P, Brown V, Warren ST, Darnell RB (2001) Fragile X mental retardation protein targets G quartet mRNAs important for neuronal function. Cell 107:489–499

    PubMed  CAS  Google Scholar 

  • Darnell JC, Mostovetsky O, Darnell RB (2005) FMRP RNA targets: identification and validation. Genes Brain Behav 4:341–349

    PubMed  CAS  Google Scholar 

  • Darnell J, Fraser C, Mostovetsky O, Darnell R (2009) Discrimination of common and unique RNA-binding activities among Fragile-X mental retardation protein paralogs. Hum Mol Genet 18(17):3164–3177

    PubMed  CAS  Google Scholar 

  • Decosterd I, Woolf CJ (2000) Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain 87:149–158

    PubMed  CAS  Google Scholar 

  • Devor M (2006) Sodium channels and mechanisms of neuropathic pain. J Pain 7:S3–S12

    PubMed  CAS  Google Scholar 

  • Dickenson AH, Sullivan AF (1987) Evidence for a role of the NMDA receptor in the frequency dependent potentiation of deep rat dorsal horn nociceptive neurones following C fibre stimulation. Neuropharmacology 26:1235–1238

    PubMed  CAS  Google Scholar 

  • Downs J, Geranton SM, Bebbington A, Jacoby P, Bahi-Buisson N, Ravine D, Leonard H (2010) Linking MECP2 and pain sensitivity: the example of Rett syndrome. Am J Med Genet A 152A:1197–1205

    PubMed  Google Scholar 

  • Dussor GO, Price TJ, Flores CM (2003) Activating transcription factor 3 mRNA is upregulated in primary cultures of trigeminal ganglion neurons. Brain Res Mol Brain Res 118:156–159

    PubMed  CAS  Google Scholar 

  • Edbauer D, Neilson JR, Foster KA et al (2010) Regulation of Synaptic Structure and Function by FMRP-Associated MicroRNAs miR-125b and miR-132. Neuron 65:373–384

    PubMed  CAS  Google Scholar 

  • Geranton SM, Jimenez-Diaz L, Torsney C, Tochiki KK, Stuart SA, Leith JL, Lumb BM, Hunt SP (2009) A rapamycin-sensitive signaling pathway is essential for the full expression of persistent pain states. J Neurosci 29:15017–15027

    PubMed  CAS  Google Scholar 

  • Gold MS, Weinreich D, Kim CS, Wang R, Treanor J, Porreca F, Lai J (2003) Redistribution of Na(V)1.8 in uninjured axons enables neuropathic pain. J Neurosci 23:158–166

    PubMed  CAS  Google Scholar 

  • Gu Y, Xu Y, Li GW, Huang LY (2005) Remote nerve injection of mu opioid receptor adeno-associated viral vector increases antinociception of intrathecal morphine. J Pain 6:447–454

    PubMed  CAS  Google Scholar 

  • Hagerman RJ, Hagerman PJ (2002) The fragile X premutation: into the phenotypic fold. Curr Opin Genet Dev 12:278–283

    PubMed  CAS  Google Scholar 

  • Heinke B, Sandkühler J (2005) Signal transduction pathways of group I metabotropic glutamate receptor-induced long-term depression at sensory spinal synapses. Pain 118:145–154

    PubMed  CAS  Google Scholar 

  • Herrero JF, Laird JM, Lopez-Garcia JA (2000) Wind-up of spinal cord neurones and pain sensation: much ado about something? Prog Neurobiol 61:169–203

    PubMed  CAS  Google Scholar 

  • Hessl D, Tassone F, Loesch DZ et al (2005) Abnormal elevation of FMR1 mRNA is associated with psychological symptoms in individuals with the fragile X premutation. Am J Med Genet B Neuropsychiatr Genet 139:115–121

    Google Scholar 

  • Hirokawa N, Takemura R (2005) Molecular motors and mechanisms of directional transport in neurons. Nat Rev Neurosci 6:201–214

    PubMed  CAS  Google Scholar 

  • Hu H-J, Alter BJ, Carrasquillo Y, Qiu C-S, Gereau RW (2007) Metabotropic glutamate receptor 5 modulates nociceptive plasticity via extracellular signal-regulated kinase-Kv4.2 signaling in spinal cord dorsal horn neurons. J Neurosci 27:13181–13191

    PubMed  CAS  Google Scholar 

  • Hu H, Qin Y, Bochorishvili G, Zhu Y, van Aelst L, Zhu JJ (2008) Ras signaling mechanisms underlying impaired GluR1-dependent plasticity associated with fragile X syndrome. J Neurosci 28:7847–7862

    PubMed  CAS  Google Scholar 

  • Hylden JL, Wilcox GL (1980) Intrathecal morphine in mice: a new technique. Eur J Pharmacol 67:313–316

    PubMed  CAS  Google Scholar 

  • Ikeda H, Stark J, Fischer H, Wagner M, Drdla R, Jager T, Sandkuhler J (2006) Synaptic amplifier of inflammatory pain in the spinal dorsal horn. Science 312:1659–1662

    PubMed  CAS  Google Scholar 

  • Jackson CA, Messinger J, Peduzzi JD, Ansardi DC, Morrow CD (2005) Enhanced functional recovery from spinal cord injury following intrathecal or intramuscular administration of poliovirus replicons encoding IL-10. Virology 336:173–183

    PubMed  CAS  Google Scholar 

  • Jarvis MF, Honore P, Shieh CC et al (2007) A-803467, a potent and selective Nav1.8 sodium channel blocker, attenuates neuropathic and inflammatory pain in the rat. Proc Natl Acad Sci U S A 104:8520–8525

    PubMed  CAS  Google Scholar 

  • Ji RR, Kohno T, Moore KA, Woolf CJ (2003) Central sensitization and LTP: do pain and memory share similar mechanisms? Trends Neurosci 26:696–705

    PubMed  CAS  Google Scholar 

  • Jiménez-Díaz L, Geranton SM, Passmore GM, Leith JL, Fisher AS, Berliocchi L, Sivasubramaniam AK, Sheasby A, Lumb BM, Hunt SP (2008) Local translation in primary afferent fibers regulates nociception. PLoS One 3:e1961

    Google Scholar 

  • Karim F, Wang CC, Gereau RWt (2001) Metabotropic glutamate receptor subtypes 1 and 5 are activators of extracellular signal-regulated kinase signaling required for inflammatory pain in mice. J Neurosci 21:3771–3779

    PubMed  CAS  Google Scholar 

  • Kelleher RJ 3rd, Govindarajan A, Tonegawa S (2004) Translational regulatory mechanisms in persistent forms of synaptic plasticity. Neuron 44:59–73

    PubMed  CAS  Google Scholar 

  • Kim SH, Chung JM (1992) An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 50:355–363

    PubMed  CAS  Google Scholar 

  • Kim YH, Park C-K, Back SK et al (2009) Membrane-delimited coupling of TRPV1 and mGluR5 on presynaptic terminals of nociceptive neurons. J Neurosci 29:10000–10009

    PubMed  CAS  Google Scholar 

  • Klein T, Magerl W, Hopf H-C, Sandkühler J, Treede R-D (2004) Perceptual correlates of nociceptive long-term potentiation and long-term depression in humans. J Neurosci 24:964–971

    PubMed  CAS  Google Scholar 

  • Koenig E (1979) Ribosomal RNA in Mauthner axon: implications for a protein synthesizing machinery in the myelinated axon. Brain Res 174:95–107

    PubMed  CAS  Google Scholar 

  • Lai J, Gold MS, Kim CS, Bian D, Ossipov MH, Hunter JC, Porreca F (2002) Inhibition of neuropathic pain by decreased expression of the tetrodotoxin-resistant sodium channel, NaV1.8. Pain 95:143–152

    PubMed  CAS  Google Scholar 

  • Lang S, Klein T, Magerl W, Treede R-D (2007) Modality-specific sensory changes in humans after the induction of long-term potentiation (LTP) in cutaneous nociceptive pathways. Pain 128:254–263

    PubMed  Google Scholar 

  • Larson J, Jessen RE, Kim D, Fine AK, du Hoffmann J (2005) Age-dependent and selective impairment of long-term potentiation in the anterior piriform cortex of mice lacking the fragile X mental retardation protein. J Neurosci 25:9460–9469

    PubMed  CAS  Google Scholar 

  • Latremoliere A, Woolf CJ (2009) Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J Pain 10:895–926

    PubMed  Google Scholar 

  • Latremoliere A, Woolf CJ (2010) Synaptic plasticity and central sensitization: author reply. J Pain 11:801–803

    PubMed  Google Scholar 

  • Li J, Pelletier MR, Perez Velazquez JL, Carlen PL (2002) Reduced cortical synaptic plasticity and GluR1 expression associated with fragile X mental retardation protein deficiency. Mol Cell Neurosci 19:138–151

    PubMed  Google Scholar 

  • Li C, Bassell GJ, Sasaki Y (2009) Fragile X mental retardation protein is involved in protein synthesis-dependent collapse of growth cones induced by semaphorin-3A. Front Neural Circuits 3:11

    PubMed  Google Scholar 

  • Lin AC, Holt CE (2008) Function and regulation of local axonal translation. Curr Opin Neurobiol 18:60–68

    PubMed  CAS  Google Scholar 

  • Malin SA, Davis BM, Molliver DC (2007) Production of dissociated sensory neuron cultures and considerations for their use in studying neuronal function and plasticity. Nat Protoc 2:152–160

    PubMed  CAS  Google Scholar 

  • Martin KC (2004) Local protein synthesis during axon guidance and synaptic plasticity. Curr Opin Neurobiol 14:305–310

    PubMed  CAS  Google Scholar 

  • Melemedjian OK, Asiedu MN, Tillu DV, Peebles KA, Yan J, Ertz N, Dussor GO, Price TJ (2010) IL-6- and NGF-induced rapid control of protein synthesis and nociceptive plasticity via convergent signaling to the eIF4F complex. J Neurosci 30:15113–15123

    PubMed  CAS  Google Scholar 

  • Merianda TT, Lin AC, Lam JS, Vuppalanchi D, Willis DE, Karin N, Holt CE, Twiss JL (2009) A functional equivalent of endoplasmic reticulum and Golgi in axons for secretion of locally synthesized proteins. Mol Cell Neurosci 40:128–142

    PubMed  CAS  Google Scholar 

  • Mientjes EJ, Nieuwenhuizen I, Kirkpatrick L et al (2006) The generation of a conditional Fmr1 knock out mouse model to study Fmrp function in vivo. Neurobiol Dis 21:549–555

    PubMed  CAS  Google Scholar 

  • Milligan ED, Sloane EM, Langer SJ et al (2005) Controlling neuropathic pain by adeno-associated virus driven production of the anti-inflammatory cytokine, interleukin-10. Mol Pain 1:9

    PubMed  Google Scholar 

  • Mogil JS (2009) Animal models of pain: progress and challenges. Nat Rev Neurosci 10:283–294

    PubMed  CAS  Google Scholar 

  • Mohr E, Richter D (2000) Axonal mRNAs: functional significance in vertebrates and invertebrates. J Neurocytol 29:783–791

    PubMed  CAS  Google Scholar 

  • Moretti P, Levenson JM, Battaglia F et al (2006) Learning and memory and synaptic plasticity are impaired in a mouse model of Rett syndrome. J Neurosci 26:319–327

    PubMed  CAS  Google Scholar 

  • Murashov AK, Chintalgattu V, Islamov RR, Lever TE, Pak ES, Sierpinski PL, Katwa LC, Van Scott MR (2007) RNAi pathway is functional in peripheral nerve axons. FASEB J 21:656–670

    PubMed  CAS  Google Scholar 

  • Nassar MA, Stirling LC, Forlani G, Baker MD, Matthews EA, Dickenson AH, Wood JN (2004) Nociceptor-specific gene deletion reveals a major role for Nav1.7 (PN1) in acute and inflammatory pain. Proc Natl Acad Sci USA 101:12706–12711

    PubMed  CAS  Google Scholar 

  • Park JW, Vahidi B, Taylor AM, Rhee SW, Jeon NL (2006) Microfluidic culture platform for neuroscience research. Nat Protoc 1:2128–2136

    PubMed  CAS  Google Scholar 

  • Pastalkova E, Serrano P, Pinkhasova D, Wallace E, Fenton AA, Sacktor TC (2006) Storage of spatial information by the maintenance mechanism of LTP. Science 313:1141–1144

    PubMed  CAS  Google Scholar 

  • Patwardhan AM, Scotland PE, Akopian AN, Hargreaves KM (2009) Activation of TRPV1 in the spinal cord by oxidized linoleic acid metabolites contributes to inflammatory hyperalgesia. Proc Natl Acad Sci U S A 106:18820–18824

    PubMed  CAS  Google Scholar 

  • Patwardhan AM, Akopian AN, Ruparel NB, Diogenes A, Weintraub ST, Uhlson C, Murphy RC, Hargreaves KM (2010) Heat generates oxidized linoleic acid metabolites that activate TRPV1 and produce pain in rodents. J Clin Invest 120:1617–1626

    PubMed  CAS  Google Scholar 

  • Price DD (1972) Characteristics of second pain and flexion reflexes indicative of prolonged central summation. Exp Neurol 37:371–387

    PubMed  CAS  Google Scholar 

  • Price TJ, Geranton SM (2009) Translating nociceptor sensitivity: the role of axonal protein synthesis in nociceptor physiology. Eur J Neurosci 29(12):2253–2263

    PubMed  Google Scholar 

  • Price DD, Hu JW, Dubner R, Gracely RH (1977) Peripheral suppression of first pain and central summation of second pain evoked by noxious heat pulses. Pain 3:57–68

    PubMed  CAS  Google Scholar 

  • Price TJ, Louria MD, Candelario-Soto D et al (2005) Treatment of trigeminal ganglion neurons in vitro with NGF, GDNF or BDNF: effects on neuronal survival, neurochemical properties and TRPV1-mediated neuropeptide secretion. BMC Neurosci 6:4

    PubMed  Google Scholar 

  • Price TJ, Flores CM, Cervero F, Hargreaves KM (2006) The RNA binding and transport proteins staufen and fragile X mental retardation protein are expressed by rat primary afferent neurons and localize to peripheral and central axons. Neuroscience 141:2107–2116

    PubMed  CAS  Google Scholar 

  • Price TJ, Rashid MH, Millecamps M, Sanoja R, Entrena JM, Cervero F (2007) Decreased nociceptive sensitization in mice lacking the fragile X mental retardation protein: role of mGluR1/5 and mTOR. J Neurosci 27:13958–13967

    PubMed  CAS  Google Scholar 

  • Puig S, Sorkin LS (1996) Formalin-evoked activity in identified primary afferent fibers: systemic lidocaine suppresses phase-2 activity. Pain 64:345–355

    PubMed  CAS  Google Scholar 

  • Romero-Sandoval EA, Horvath RJ, DeLeo JA (2008) Neuroimmune interactions and pain: focus on glial-modulating targets. Curr Opin Investig Drugs 9:726–734

    PubMed  CAS  Google Scholar 

  • Roza C, Laird JM, Souslova V, Wood JN, Cervero F (2003) The tetrodotoxin-resistant Na+ channel Nav1.8 is essential for the expression of spontaneous activity in damaged sensory axons of mice. J Physiol 550:921–926

    PubMed  CAS  Google Scholar 

  • Sandkuhler J (2007) Understanding LTP in pain pathways. Mol Pain 3:9

    PubMed  Google Scholar 

  • Sandkuhler J (2010) Central sensitization versus synaptic long-term potentiation (LTP): a critical comment. J Pain 11:798–800

    PubMed  Google Scholar 

  • Shema R, Sacktor TC, Dudai Y (2007) Rapid erasure of long-term memory associations in the cortex by an inhibitor of PKM zeta. Science 317:951–953

    PubMed  CAS  Google Scholar 

  • Stirling LC, Forlani G, Baker MD, Wood JN, Matthews EA, Dickenson AH, Nassar MA (2005) Nociceptor-specific gene deletion using heterozygous NaV1.8-Cre recombinase mice. Pain 113:27–36

    PubMed  CAS  Google Scholar 

  • Symons FJ, Clark RD, Hatton DD, Skinner M, Bailey DB Jr (2003) Self-injurious behavior in young boys with fragile X syndrome. Am J Med Genet A 118:115–121

    Google Scholar 

  • Symons FJ, Byiers BJ, Raspa M, Bishop E, Bailey DB (2010) Self-injurious behavior and fragile X syndrome: findings from the national fragile x survey. Am J Intellect Dev Disabil 115:473–481

    PubMed  Google Scholar 

  • Taylor BK, Peterson MA, Basbaum AI (1995) Persistent cardiovascular and behavioral nociceptive responses to subcutaneous formalin require peripheral nerve input. J Neurosci 15:7575–7584

    PubMed  CAS  Google Scholar 

  • Taylor AM, Blurton-Jones M, Rhee SW, Cribbs DH, Cotman CW, Jeon NL (2005) A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nat Methods 2:599–605

    PubMed  CAS  Google Scholar 

  • Thakor DK, Lin A, Matsuka Y, Meyer EM, Ruangsri S, Nishimura I, Spigelman I (2009) Increased peripheral nerve excitability and local NaV1.8 mRNA up-regulation in painful neuropathy. Mol Pain 5:14

    PubMed  Google Scholar 

  • Tohda C, Sasaki M, Konemura T, Sasamura T, Itoh M, Kuraishi Y (2001) Axonal transport of VR1 capsaicin receptor mRNA in primary afferents and its participation in inflammation-induced increase in capsaicin sensitivity. J Neurochem 76:1628–1635

    PubMed  CAS  Google Scholar 

  • Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, Raumann BE, Basbaum AI, Julius D (1998) The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21:531–543

    PubMed  CAS  Google Scholar 

  • Turner G, Webb T, Wake S, Robinson H (1996) Prevalence of fragile X syndrome. Am J Med Genet 64:196–197

    PubMed  CAS  Google Scholar 

  • Twiss JL, Smith DS, Chang B, Shooter EM (2000) Translational control of ribosomal protein L4 mRNA is required for rapid neurite regeneration. Neurobiol Dis 7:416–428

    PubMed  CAS  Google Scholar 

  • Tzabazis AZ, Pirc G, Votta-Velis E, Wilson SP, Laurito CE, Yeomans DC (2007) Antihyperalgesic effect of a recombinant herpes virus encoding antisense for calcitonin gene-related peptide. Anesthesiology 106:1196–1203

    PubMed  CAS  Google Scholar 

  • van der Neut R (1997) Targeted gene disruption: applications in neurobiology. J Neurosci Methods 71:19–27

    PubMed  Google Scholar 

  • Whitlock JR, Heynen AJ, Shuler MG, Bear MF (2006) Learning induces long-term potentiation in the hippocampus. Science 313:1093–1097

    PubMed  CAS  Google Scholar 

  • Willis DE, Twiss JL (2006) The evolving roles of axonally synthesized proteins in regeneration. Curr Opin Neurobiol 16:111–118

    PubMed  CAS  Google Scholar 

  • Willis D, Li KW, Zheng JQ et al (2005) Differential transport and local translation of cytoskeletal, injury-response, and neurodegeneration protein mRNAs in axons. J Neurosci 25:778–791

    PubMed  CAS  Google Scholar 

  • Wilson BM, Cox CL (2007) Absence of metabotropic glutamate receptor-mediated plasticity in the neocortex of fragile X mice. Proc Natl Acad Sci U S A 104:2454–2459

    PubMed  CAS  Google Scholar 

  • Woolf CJ (2010) Central sensitization: implications for the diagnosis and treatment of pain. Pain 152(3 Suppl):S2–S15

    PubMed  Google Scholar 

  • Zhao MG, Toyoda H, Ko SW, Ding HK, Wu LJ, Zhuo M (2005) Deficits in trace fear memory and long-term potentiation in a mouse model for fragile X syndrome. J Neurosci 25:7385–7392

    PubMed  CAS  Google Scholar 

  • Zheng JQ, Kelly TK, Chang B, Ryazantsev S, Rajasekaran AK, Martin KC, Twiss JL (2001) A functional role for intra-axonal protein synthesis during axonal regeneration from adult sensory neurons. J Neurosci 21:9291–9303

    PubMed  CAS  Google Scholar 

  • Zhou L, Nepote V, Rowley DL, Levacher B, Zvara A, Santha M, Mi QS, Simonneau M, Donovan DM (2002) Murine peripherin gene sequences direct Cre recombinase expression to peripheral neurons in transgenic mice. FEBS Lett 523:68–72

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by startup funds from The University of Arizona School of Medicine, The American Pain Society, The Rita Allen Foundation, and NIH Grant R01NS065926 to TJP. TJP is a Rita Allen Foundation Scholar in Pain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodore J. Price .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Price, T.J., Melemedjian, O.K. (2012). Fragile X Mental Retardation Protein (FMRP) and the Spinal Sensory System. In: Denman, R. (eds) Modeling Fragile X Syndrome. Results and Problems in Cell Differentiation, vol 54. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21649-7_4

Download citation

Publish with us

Policies and ethics