Skip to main content

On Alternative Biological Scenarios for the Evolutionary Transitions to DNA and Biological Protein Synthesis

  • Chapter
  • First Online:
Origins of Life: The Primal Self-Organization

Abstract

The RNA world hypothesis has become a central part of current thought on the origin of life. For biologists, this has provided especially fertile ground, since the biological origins of genetically encoded protein synthesis and of deoxyribonucleotide synthesis through ribonucleotide reduction can both be understood within an RNA world framework. However, these are not the only possible routes by which proteins and DNA could have evolved. Some proteins are synthesised by modular non-ribosomal peptide synthetases, and E. coli have recently been engineered to synthesise deoxyribonucleotides via the previously hypothetical reverse deoxyriboaldolase reaction. In this chapter, I consider to what degree these alternative processes impact our understanding of the evolutionary transitions from RNA to proteins and DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amoutzias GD, Van de Peer Y, Mossialos D (2008) Evolution and taxonomic distribution of nonribosomal peptide and polyketide synthases. Future Microbiol 3:361–370

    Article  PubMed  CAS  Google Scholar 

  • Anastasi C et al (2007) RNA: prebiotic product, or biotic invention? Chem Biodivers 4:721–739

    Article  PubMed  CAS  Google Scholar 

  • Atkins JF (1993) Contemporary RNA genomes. In: Gesteland RF, Atkins JF (eds) The RNA world, 1st edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 535–556

    Google Scholar 

  • Ban N, Nissen P, Hansen J, Moore PB, Steitz TA (2000) The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science 289:905–920

    Article  CAS  Google Scholar 

  • Benner SA, Ellington AD, Tauer A (1989) Modern metabolism as a palimpsest of the RNA world. Proc Natl Acad Sci USA 86:7054–7058

    Article  PubMed  CAS  Google Scholar 

  • Breaker RR (2010) Riboswitches and the RNA world. Cold Spring Harb Perspect Biol :10.1101/cshperspect.a003566

  • Burton AS, Lehman N (2009) DNA before proteins? Recent discoveries in nucleic acid catalysis strengthen the case. Astrobiology 9:125–130

    Article  PubMed  CAS  Google Scholar 

  • Campbell JH (1991) An RNA replisome as the ancestor of the ribosome. J Mol Evol 32:3–5

    Article  PubMed  CAS  Google Scholar 

  • Cech TR (2009a) Crawling out of the RNA world. Cell 136:599–602

    Article  PubMed  CAS  Google Scholar 

  • Cech TR (2009b) Evolution of biological catalysis: ribozyme to RNP enzyme. Cold Spring Harb Symp Quant Biol 74:11–16

    Article  PubMed  CAS  Google Scholar 

  • Celander DW, Cech TR (1990) Iron(II)-ethylenediaminetetraacetic acid catalyzed cleavage of RNA and DNA oligonucleotides: similar reactivity toward single- and double-stranded forms. Biochemistry 29:1355–1361

    Article  PubMed  CAS  Google Scholar 

  • Cheng LK, Unrau PJ (2010) Closing the circle: replicating RNA with RNA. Cold Spring Harb Perspect Biol 2:a002204

    Article  PubMed  CAS  Google Scholar 

  • Crick FH (1968) The origin of the genetic code. J Mol Biol 38:367–379

    Article  PubMed  CAS  Google Scholar 

  • Davies J (1990) What are antibiotics? Archaic functions for modern activities. Mol Microbiol 4:1227–1232

    Article  PubMed  CAS  Google Scholar 

  • Diener TO (2003) Discovering viroids – a personal perspective. Nat Rev Microbiol 1:75–80

    Article  PubMed  CAS  Google Scholar 

  • Dworkin JP, Lazcano A, Miller SL (2003) The roads to and from the RNA world. J Theor Biol 222:127–134

    Article  PubMed  CAS  Google Scholar 

  • Egel R (2009) Peptide-dominated membranes preceding the genetic takeover by RNA: latest thinking on a classic controversy. Bioessays 31:1100–1109

    Article  PubMed  CAS  Google Scholar 

  • Fischbach MA, Walsh CT (2006) Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem Rev 106:3468–3496

    Article  PubMed  CAS  Google Scholar 

  • Forterre P (2002) The origin of DNA genomes and DNA replication proteins. Curr Opin Microbiol 5:525–532

    Article  PubMed  CAS  Google Scholar 

  • Forterre P (2005) The two ages of the RNA world, and the transition to the DNA world: a story of viruses and cells. Biochimie 87:793–803

    Article  PubMed  CAS  Google Scholar 

  • Forterre P, Filée J, Myllykallio H (2004) Origin and evolution of DNA and DNA replication machineries. In: de Pouplana LR (ed) The genetic code and the origin of life. Landes Bioscience, Georgetown, pp 145–168

    Google Scholar 

  • Fox GE (2010) Origin and evolution of the ribosome. Cold Spring Harb Perspec Biol 2:a003483

    Article  Google Scholar 

  • Fraenkel-Conrat H (1956) The role of the nucleic acid in the reconstitution of active Tobacco Mosaic Virus. J Am Chem Soc 78:882–883

    Article  CAS  Google Scholar 

  • Freeland SJ, Knight RD, Landweber LF (1999) Do proteins predate DNA? Science 286:690–692

    Google Scholar 

  • Gánti T (2003) The principles of life. Oxford University Press, Oxford

    Book  Google Scholar 

  • Gierer A, Schramm G (1956) Infectivity of ribonucleic acid from Tobacco Mosaic Virus. Nature 177:702–703

    Article  PubMed  CAS  Google Scholar 

  • Gordon KH (1995) Were RNA replication and translation directly coupled in the RNA (+protein?) world? J Theor Biol 173:179–193

    Article  PubMed  CAS  Google Scholar 

  • Guerrier-Takada C, Gardiner K, Marsh T, Pace N, Altman S (1983) The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35:849–857

    Article  PubMed  CAS  Google Scholar 

  • Horinouchi N et al (2009) Screening and characterization of a phosphopentomutase useful for enzymatic production of 2′-deoxyribonucleoside. New Biotechnol 26:75–82

    Article  CAS  Google Scholar 

  • Horinouchi N et al (2006a) Biochemical retrosynthesis of 2′-deoxyribonucleosides from glucose, acetaldehyde, and a nucleobase. Appl Microbiol Biotechnol 71:615–621

    Article  PubMed  CAS  Google Scholar 

  • Horinouchi N et al (2006b) One-pot microbial synthesis of 2′-deoxyribonucleoside from glucose, acetaldehyde, and a nucleobase. Biotechnol Lett 28:877–881

    Article  PubMed  CAS  Google Scholar 

  • Horinouchi N et al (2003) Construction of deoxyriboaldolase-overexpressing Escherichia coli and its application to 2-deoxyribose 5-phosphate synthesis from glucose and acetaldehyde for 2′-deoxyribonucleoside production. Appl Environ Microbiol 69:3791–3797

    Article  PubMed  CAS  Google Scholar 

  • Husi H, Schorgendorfer K, Stempfer G, Taylor P, Walkinshaw MD (1997) Prediction of substrate-specific pockets in cyclosporin synthetase. FEBS Lett 414:532–536

    Article  PubMed  CAS  Google Scholar 

  • Jeffares DC, Poole AM, Penny D (1998) Relics from the RNA world. J Mol Evol 46:18–36

    Article  PubMed  CAS  Google Scholar 

  • Joyce GF (2002) The antiquity of RNA-based evolution. Nature 418:214–221

    Article  PubMed  CAS  Google Scholar 

  • Joyce GF, Orgel LE (1999) Prospects for understanding the origin of the RNA world. In: Gesteland RF, Cech TR, Atkins JF (eds) The RNA world, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 49–77

    Google Scholar 

  • Khvorova A, Kwak YG, Tamkun M, Majerfeld I, Yarus M (1999) RNAs that bind and change the permeability of phospholipid membranes. Proc Natl Acad Sci USA 96:10649–10654

    Article  PubMed  CAS  Google Scholar 

  • Kruger K, Grabowski PJ, Zaug AJ, Sands J, Gottschling DE, Cech TR (1982) Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 31:147–157

    Article  PubMed  CAS  Google Scholar 

  • Kun A, Santos M, Szathmary E (2005) Real ribozymes suggest a relaxed error threshold. Nat Genet 37:1008–1011

    Article  PubMed  CAS  Google Scholar 

  • Kurland CG (2010) The RNA dreamtime: modern cells feature proteins that might have supported a prebiotic polypeptide world but nothing indicates that RNA world ever was. Bioessays 32:866–871

    Article  PubMed  CAS  Google Scholar 

  • Lawen A, Traber R (1993) Substrate specificities of cyclosporin synthetase and peptolide SDZ 214–103 synthetase. Comparison of the substrate specificities of the related multifunctional polypeptides. J Biol Chem 268:20452–20465

    PubMed  CAS  Google Scholar 

  • Lawen A, Zocher R (1990) Cyclosporin synthetase. The most complex peptide synthesizing multienzyme polypeptide so far described. J Biol Chem 265:11355–11360

    PubMed  CAS  Google Scholar 

  • Lazcano A, Guerrero R, Margulis L, Oro J (1988) The evolutionary transition from RNA to DNA in early cells. J Mol Evol 27:283–290

    Article  PubMed  CAS  Google Scholar 

  • Leipe DD, Aravind L, Koonin EV (1999) Did DNA replication evolve twice independently? Nucleic Acids Res 27:3389–3401

    Article  PubMed  CAS  Google Scholar 

  • Lincoln TA, Joyce GF (2009) Self-sustained replication of an RNA enzyme. Science 323:1229–1232

    Google Scholar 

  • Lundin D, Gribaldo S, Torrents E, Sjoberg BM, Poole AM (2010) Ribonucleotide reduction – horizontal transfer of a required function spans all three domains. BMC Evol Biol 10:383

    Article  PubMed  CAS  Google Scholar 

  • Lundin D, Torrents E, Poole AM, Sjoberg BM (2009) RNRdb, a curated database of the universal enzyme family ribonucleotide reductase, reveals a high level of misannotation in sequences deposited to Genbank. BMC Genomics 10:589

    Article  PubMed  Google Scholar 

  • Marahiel MA (2009) Working outside the protein-synthesis rules: insights into non-ribosomal peptide synthesis. J Pept Sci 15:799–807

    Article  PubMed  CAS  Google Scholar 

  • Moore PB, Steitz TA (2002) The involvement of RNA in ribosome function. Nature 418:229–235

    Article  PubMed  CAS  Google Scholar 

  • Mootz HD, Schwarzer D, Marahiel MA (2000) Construction of hybrid peptide synthetases by module and domain fusions. Proc Natl Acad Sci USA 97:5848–5853

    Article  PubMed  CAS  Google Scholar 

  • Nissen P, Hansen J, Ban N, Moore PB, Steitz TA (2000) The structural basis of ribosome activity in peptide bond synthesis. Science 289:920–930

    Article  CAS  Google Scholar 

  • Noller HF (2010) Evolution of protein synthesis from an RNA world. Cold Spring Harb Persp Biol: 10.1101/cshperspect.a003681

    Google Scholar 

  • Nordlund P, Reichard P (2006) Ribonucleotide reductases. Annu Rev Biochem 75:681–706

    Article  PubMed  CAS  Google Scholar 

  • Ogawa J et al (2003) Microbial production of 2-deoxyribose 5-phosphate from acetaldehyde and triosephosphate for the synthesis of 2′-deoxyribonucleosides. Biosci Biotechnol Biochem 67:933–936

    Article  PubMed  CAS  Google Scholar 

  • Orgel LE (1968) Evolution of the genetic apparatus. J Mol Biol 38:381–393

    Article  PubMed  CAS  Google Scholar 

  • Orgel LE (2004) Prebiotic chemistry and the origin of the RNA world. Crit Rev Biochem Mol Biol 39:99–123

    Article  PubMed  CAS  Google Scholar 

  • Poole A, Penny D, Sjöberg B-M (2000) Methyl-RNA: an evolutionary bridge between RNA and DNA? Chem Biol 7:R207–216

    Article  PubMed  CAS  Google Scholar 

  • Poole A, Penny D, Sjoberg BM (2001) Confounded cytosine! Tinkering and the evolution of DNA. Nat Rev Mol Cell Biol 2:147–151

    Article  PubMed  CAS  Google Scholar 

  • Poole AM (2006) Getting from an RNA world to modern cells just got a little easier. Bioessays 28:105–108

    Article  PubMed  CAS  Google Scholar 

  • Poole AM, Jeffares DC, Penny D (1998) The path from the RNA world. J Mol Evol 46:1–17

    Article  PubMed  CAS  Google Scholar 

  • Poole AM, Logan DT (2005) Modern mRNA proofreading and repair: clues that the last universal common ancestor possessed an RNA genome? Mol Biol Evol 22:1444–1455

    Article  PubMed  CAS  Google Scholar 

  • Poole AM, Logan DT, Sjöberg B-M (2002) The evolution of the ribonucleotide reductases: much ado about oxygen. J Mol Evol 55:180–196

    Article  PubMed  CAS  Google Scholar 

  • Powner MW, Gerland B, Sutherland JD (2009) Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459:239–242

    Article  PubMed  CAS  Google Scholar 

  • Reichard P (1989) Commentary on 'formation of deoxycytidine 5′-phosphate from cytidine 5′-phosphate with enzymes from Escherichia coli'. Biochim Biophys Acta 1000:49–50

    PubMed  CAS  Google Scholar 

  • Reichard P, Rutberg L (1989) Formation of deoxycytidine 5′-phosphate from cytidine 5′-phosphate with enzymes from Escherichia coli. 1960. Biochim Biophys Acta 1000:51–52

    PubMed  CAS  Google Scholar 

  • Ricardo A, Carrigan MA, Olcott AN, Benner SA (2004) Borate minerals stabilize ribose. Science 303:196

    Article  PubMed  CAS  Google Scholar 

  • Roongsawang N, Washio K, Morikawa M (2010) Diversity of nonribosomal peptide synthetases involved in the biosynthesis of lipopeptide biosurfactants. Int J Mol Sci 12:141–172

    Article  PubMed  Google Scholar 

  • Scheuring I (2000) Avoiding catch-22 of early evolution by stepwise increase in copying fidelity. Selection 1:135–145

    Article  Google Scholar 

  • Schmidt B, Riesner D, Lawen A, Kleinkauf H (1992) Cyclosporin synthetase is a 1.4 MDa multienzyme polypeptide. Re-evaluation of the molecular mass of various peptide synthetases. FEBS Lett 307:355–360

    Article  PubMed  CAS  Google Scholar 

  • Sintchak MD, Arjara G, Kellogg BA, Stubbe J, Drennan CL (2002) The crystal structure of class II ribonucleotide reductase reveals how an allosterically regulated monomer mimics a dimer. Nat Struct Biol 9:293–300

    Article  PubMed  CAS  Google Scholar 

  • Springsteen G, Joyce GF (2004) Selective derivatization and sequestration of ribose from a prebiotic mix. J Am Chem Soc 126:9578–9583

    Article  PubMed  CAS  Google Scholar 

  • Stachelhaus T, Mootz HD, Marahiel MA (1999) The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem Biol 6:493–505

    Article  PubMed  CAS  Google Scholar 

  • Stachelhaus T, Schneider A, Marahiel MA (1995) Rational design of peptide antibiotics by targeted replacement of bacterial and fungal domains. Science 269:69–72

    Google Scholar 

  • Steitz TA, Moore PB (2003) RNA, the first macromolecular catalyst: the ribosome is a ribozyme. Trends Biochem Sci 28:411–418

    Article  PubMed  CAS  Google Scholar 

  • Strieker M, Tanovic A, Marahiel MA (2010) Nonribosomal peptide synthetases: structures and dynamics. Curr Opin Struct Biol 20:234–240

    Article  PubMed  CAS  Google Scholar 

  • Sudarsan N, Barrick JE, Breaker RR (2003) Metabolite-binding RNA domains are present in the genes of eukaryotes. RNA 9:644–647

    Article  PubMed  CAS  Google Scholar 

  • Sun L, Cui Z, Gottlieb RL, Zhang B (2002) A selected ribozyme catalyzing diverse dipeptide synthesis. Chem Biol 9:619–628

    Article  PubMed  CAS  Google Scholar 

  • Sutherland JD (2010) Ribonucleotides. Cold Spring Harb Perspect Biol 2:a005439

    Article  PubMed  Google Scholar 

  • Szathmary E (1999) The origin of the genetic code: amino acids as cofactors in an RNA world. Trends Genet 15:223–229

    Article  PubMed  CAS  Google Scholar 

  • Szathmáry E (2006) The origin of replicators and reproducers. Philos Trans R Soc Lond 361:1761–1776

    Article  Google Scholar 

  • Talini G, Gallori E, Maurel MC (2009) Natural and unnatural ribozymes: back to the primordial RNA world. Res Microbiol 160:457–465

    Article  PubMed  CAS  Google Scholar 

  • Tan R, Frankel AD (1998) A novel glutamine-RNA interaction identified by screening libraries in mammalian cells. Proc Natl Acad Sci USA 95:4247–4252

    Article  PubMed  CAS  Google Scholar 

  • Vlassov A, Khvorova A, Yarus M (2001) Binding and disruption of phospholipid bilayers by supramolecular RNA complexes. Proc Natl Acad Sci USA 98:7706–7711

    Article  PubMed  CAS  Google Scholar 

  • von Dohren H, Dieckmann R, Pavela-Vrancic M (1999) The nonribosomal code. Chem Biol 6:R273–279

    Article  Google Scholar 

  • Welch M, Majerfeld I, Yarus M (1997) 23 S rRNA similarity from selection for peptidyl transferase mimicry. Biochemistry 36:6614–6623

    Article  PubMed  CAS  Google Scholar 

  • White HB 3rd (1976) Coenzymes as fossils of an earlier metabolic state. J Mol Evol 7:101–104

    Article  PubMed  CAS  Google Scholar 

  • White HB 3rd (1982) Evolution of coenzymes and the origin of pyridine nucleotides. In: Anderson B, You K, Everse J (eds) The pyridine nucleotide coenzymes. Academic Press, New York, pp 1–17

    Google Scholar 

  • Wilson TJ, Lilley DM (2009) Biochemistry. The evolution of ribozyme chemistry. Science 323:1436–1438

    Google Scholar 

  • Yarus M (2002) Primordial genetics: phenotype of the ribocyte. Annu Rev Genet 36:125–151

    Article  PubMed  CAS  Google Scholar 

  • Zhang B, Cech TR (1997) Peptide bond formation by in vitro selected ribozymes. Nature 390:96–100

    Article  PubMed  CAS  Google Scholar 

  • Zhang B, Cech TR (1998) Peptidyl-transferase ribozymes: trans reactions, structural characterization and ribosomal RNA-like features. Chem Biol 5:539–553

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I thank the editors for the invitation to contribute to this book. I thank the Royal Swedish Academy of Sciences for past support via a grant from the Knut and Alice Wallenberg Foundation. Support of the New Zealand Marsden Fund is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony M. Poole .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Poole, A.M. (2011). On Alternative Biological Scenarios for the Evolutionary Transitions to DNA and Biological Protein Synthesis. In: Egel, R., Lankenau, DH., Mulkidjanian, A. (eds) Origins of Life: The Primal Self-Organization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21625-1_10

Download citation

Publish with us

Policies and ethics