Skip to main content

Panorama Ultrasound for Guiding Epidural Anesthesia: A Feasibility Study

  • Conference paper
Information Processing in Computer-Assisted Interventions (IPCAI 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6689))

Abstract

Epidural anesthesia is a common but challenging procedure in obstetrics and surgery, especially for the obese patient. An ultrasound guidance system is proposed using a transducer-mounted camera to create 3D panorama images of the spine relative to markings on the skin. Guidance will include identification of individual vertebrae, and selection of a suitable puncture site, trajectory and depth of needle insertion. This study describes the panorama creation and preliminary testing. The camera tracks the transducer movement using a specialized strip of markers attached to the skin surface, which enables absolute position estimation of the transducer with respect to the patient over the full range of the spine. The 3D panorama image can then be resliced in various parasagittal planes to show either the target epidural spaces or the laminae. The geometric accuracy of the panoramas are validated against an optical tracking system and independent measurements by a sonographer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ali, A., Logeswaran, R.: A visual probe localization and calibration system for cost-effective computer-aided 3D ultrasound. Computers in Biology and Medicine 37(8), 1141–1147 (2007)

    Article  Google Scholar 

  2. Bouguet, J.Y.: Visual methods for three-dimensional modeling. Ph.D. thesis, California Institute of Technology, Pasadena, CA (1999)

    Google Scholar 

  3. Chan, C., Lam, F., Rohling, R.: A needle tracking device for ultrasound guided percutaneous procedures. Ultrasound in Medicine & Biology 31(11), 1469–1483 (2005)

    Article  Google Scholar 

  4. Chestnut, D.H.: Obstetric Anesthesia: Principles and Practice. Mosby Inc., St. Louis (2004)

    Google Scholar 

  5. Flaccavento, G., Lawrence, P., Rohling, R.: Patient and probe tracking during freehand ultrasound. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3217, pp. 585–593. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Gee, A.H., Housden, R.J., Hassenpflug, P., Treece, G.M., Prager, R.W.: Sensorless freehand 3D ultrasound in real tissue: Speckle decorrelation without fully developed speckle. Medical Image Analysis 10(2), 137–149 (2006)

    Article  Google Scholar 

  7. Glossop, N.D.: Advantages of optical compared with electromagnetic tracking. The Journal of Bone and Joint Surgery 91, 23–28 (2009)

    Article  Google Scholar 

  8. Hacihaliloglu, I., Abugharbieh, R., Hodgson, A.J., Rohling, R.N.: Bone surface localization in ultrasound using image phase-based features. Ultrasound in Medicine & Biology 35(9), 1475–1487 (2009)

    Article  Google Scholar 

  9. Harris, C., Stephens, M.J.: A combined corner and edge detector. In: Fourth Alvey Vision Conference, pp. 147–152 (1988)

    Google Scholar 

  10. Horlocker, T.T.: Complications of spinal and epidural anesthesia. Anesthesiology Clinics of North America 18(2), 461–485 (2000)

    Article  Google Scholar 

  11. Kerby, B., Rohling, R., Nair, V., Abolmaesumi, P.: Automatic identification of lumbar level with ultrasound. In: IEEE Engineering in Medicine and Biology Society, pp. 2980–2983 (2008)

    Google Scholar 

  12. Leotta, D.F.: An efficient calibration method for freehand 3D ultrasound imaging systems. Ultrasound in Medicine & Biology 30(7), 999–1008 (2004)

    Article  Google Scholar 

  13. van Liere, R., Mulder, J.D.: Optical tracking using projective invariant marker pattern properties. In: IEEE Virtual Reality, pp. 191–198 (2003)

    Google Scholar 

  14. Loaiza, M., Raposo, A.B., Gattass, M.: A novel optical tracking algorithm for point-based projective invariant marker patterns. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Paragios, N., Tanveer, S.-M., Ju, T., Liu, Z., Coquillart, S., Cruz-Neira, C., Müller, T., Malzbender, T. (eds.) ISVC 2007, Part I. LNCS, vol. 4841, pp. 160–169. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Mercier, L., Lang, T., Lindseth, F., Collins, D.L.: A review of calibration techniques for freehand 3-D ultrasound systems. Ultrasound in Medicine & Biology 31(4), 449–471 (2005)

    Article  Google Scholar 

  16. Prager, R.W., Gee, A., Berman, L.: Stradx: real-time acquisition and visualization of freehand three-dimensional ultrasound. Medical Image Analysis 3(2), 129–140 (1999)

    Article  Google Scholar 

  17. Quan, L., Lan, Z.: Linear n-point camera pose determination. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(8), 774–780 (1999)

    Article  Google Scholar 

  18. Reynolds, F.: Logic in the safe practice of spinal anaesthesia. Anaesthesia 55(11), 1045–1046 (2000)

    Article  Google Scholar 

  19. Sauer, F., Khamene, A.: Video-assistance for ultrasound guided biopsy. U.S. Patent 6,612,991 (2003)

    Google Scholar 

  20. J., P., Stolka, H.-J.K., Choti, M., Boctor, E.M.: Multi-DoF probe trajectory reconstruction with local sensors for 2D-to-3D ultrasound. In: International Symposium on Biomedical Imaging: From Nano to Macro, pp. 316–319 (2010)

    Google Scholar 

  21. Tran, D., Rohling, R.N.: Automatic detection of lumbar anatomy in ultrasound images of human subjects. IEEE Transactions on Biomedical Engineering 57, 2248–2256 (2010)

    Article  Google Scholar 

  22. Tran, D., Kamani, A., Al-Attas, E., Lessoway, V., Massey, S., Rohling, R.: Single-operator real-time ultrasound-guidance to aim and insert a lumbar epidural needle. Canadian Journal of Anesthesia 57, 313–321 (2010)

    Article  Google Scholar 

  23. Tran, D., Kamani, A.A., Lessoway, V.A., Peterson, C., Hor, K.W., Rohling, R.N.: Preinsertion paramedian ultrasound guidance for epidural anesthesia. Anesthesia & Analgesia 109(2), 661–667 (2009)

    Article  Google Scholar 

  24. Zhang, X., Fronz, S., Navab, N.: Visual marker detection and decoding in ar systems: A comparative study. In: 1st International Symposium on Mixed and Augmented Reality, pp. 97–106 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rafii-Tari, H., Abolmaesumi, P., Rohling, R. (2011). Panorama Ultrasound for Guiding Epidural Anesthesia: A Feasibility Study. In: Taylor, R.H., Yang, GZ. (eds) Information Processing in Computer-Assisted Interventions. IPCAI 2011. Lecture Notes in Computer Science, vol 6689. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21504-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21504-9_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21503-2

  • Online ISBN: 978-3-642-21504-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics