Skip to main content

Parallelising Computational Microstructure Simulations for Metallic Materials with OpenMP

  • Conference paper
OpenMP in the Petascale Era (IWOMP 2011)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 6665))

Included in the following conference series:

Abstract

This work focuses on the OpenMP parallelisation of an iterative linear equation solver and parallel usage of an explicit solver for the nonlinear phase-field equations. Both solvers are used in microstructure evolution simulations based on the phase-field method. For the latter one, we compare a graph based solution using OpenMP tasks to a first-come-first-serve scheduling using an OpenMP critical section. We discuss how the task solution might benefit from the introduction of OpenMP task dependencies. The concepts are implemented in the software MICRESS which is mainly used by material engineers for the simulation of the evolving material microstructure during processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Saad, Y.: Krylov Subspace Methods for Solving Large Unsymmetric Linear Systems. Mathematics of Computation 37(155), 105–126 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  2. MICRESS (2010), http://web.access.rwth-aachen.de/MICRESS

  3. Provatas, N., Elder, K.: Phase-field Methods in Materials Science and Engineering. Wiley-VCH, Chichester (2010)

    Book  Google Scholar 

  4. Schmitz, G.J., Prahl, U.: Toward a Virtual Platform for Materials Processing. JOM Journal of the Minerals, Metals and Materials Society 61(5), 19–23 (2009)

    Article  Google Scholar 

  5. Böttger, B., Apel, M., Eiken, J., Schaffnit, P., Steinbach, I.: Phase-field Simulation of Solidification and Solid-state Transformations in Multicomponent Steels. Steel Research Int. 79(8), 608–616 (2008)

    Article  Google Scholar 

  6. Terboven, C., an Mey, D., Schmidl, D., Jin, H., Reichstein, T.: Data and Thread Affinity in Openmp Programs. In: Proceedings of the 2008 Workshop on Memory Access on Future Processors: a Solved Problem?, MAW 2008, pp. 377–384. ACM, New York (2008)

    Chapter  Google Scholar 

  7. Ayguadé, E., Duran, A., Hoeflinger, J.P., Massaioli, F., Teruel, X.: An Experimental Evaluation of the New OpenMP Tasking Model. In: Adve, V., Garzarán, M.J., Petersen, P. (eds.) LCPC 2007. LNCS, vol. 5234, pp. 63–77. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Duran, A., Teruel, X., Ferrer, R., Martorell, X., Ayguadé, E.: Barcelona Openmp Tasks Suite: A Set of Benchmarks Targeting the Exploitation of Task Parallelism in Openmp. In: International Conference on Parallel Processing, ICPP 2009, pp. 124–131 (September 2009)

    Google Scholar 

  9. Duran, A., Perez, J., Ayguadé, E., Badia, R., Labarta, J.: Extending the Openmp Tasking Model to Allow Dependent Tasks. In: Eigenmann, R., de Supinski, B.R. (eds.) IWOMP 2008. LNCS, vol. 5004, pp. 111–122. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Kapinos, P., an Mey, D.: Productivity and Performance Portability of the Openmp 3.0 Tasking Concept When Applied to an Engineering Code Written in Fortran 95. International Journal of Parallel Programming 38, 379–395 (2010), 10.1007/s10766-010-0138-1

    Article  MATH  Google Scholar 

  11. OpenMP. OpenMP Application Program Interface Version 3.0 (2008), http://www.openmp.org/mp-documents/spec30.pdf

  12. van der Vorst, H.A.: Parallelism in cg-like Methods. In: Parallel Computing: State-of-the-Art and Perspectives, pp. 3–20. Elsevier, Amsterdam (1996)

    Google Scholar 

  13. Meister, A.: Numerik Linearer Gleichungssysteme: Eine Einführung in Moderne Verfahren. Vieweg, Wiesbaden (2008)

    Google Scholar 

  14. Plimpton, S.: Fast Parallel Algorithms for Short-range Molecular Dynamics. Journal of Computational Physics 117, 1–19 (1995)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Altenfeld, R., Apel, M., an Mey, D., Böttger, B., Benke, S., Bischof, C. (2011). Parallelising Computational Microstructure Simulations for Metallic Materials with OpenMP. In: Chapman, B.M., Gropp, W.D., Kumaran, K., Müller, M.S. (eds) OpenMP in the Petascale Era. IWOMP 2011. Lecture Notes in Computer Science, vol 6665. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21487-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21487-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21486-8

  • Online ISBN: 978-3-642-21487-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics