Skip to main content

Operation Based Model Representation: Experiences on Inconsistency Detection

  • Conference paper
Modelling Foundations and Applications (ECMFA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 6698))

Included in the following conference series:

Abstract

Keeping the consistency between design models is paramount in complex contexts. It turns out that the underlying Model Representation Strategy has an impact on the inconsistency detection activity. The Operation Based strategy represents models as the sequence of atomic editing actions that lead to its current state. Claims have been made about gains in time and space complexity and in versatility by using this kind of representation when compared to the traditional object based one. However, this hypothesis has never been tested in an industrial context before. In this paper, we detail our experience evaluating an Operation Based consistency engine (Praxis) when compared with a legacy system based on EMF. We evaluated a set of industrial models under inconsistency rules written in both Java (for EMF) and PraxisRules (the DSL – Domain Specific Language – for describing inconsistency rules in Praxis). Our results partially confirm the gains claimed by the Operation Based engines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Selic, B.: The pragmatics of model-driven development. IEEE Software 20(5), 19–25 (2003)

    Article  Google Scholar 

  2. International Organization for Standardization: ISO/IEC FCD 42010: Systems and software engineering - Architecture Description (June 2010)

    Google Scholar 

  3. OMG: Meta Object Facility (MOF) 2.0 Core Specification (January 2006)

    Google Scholar 

  4. Mens, T., Van Der Straeten, R., D’Hondt, M.: Detecting and resolving model inconsistencies using transformation dependency analysis. In: Wang, J., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 200–214. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Balzer, R.: Tolerating inconsistency. In: Proc. Int’ Conf. Software engineering (ICSE 1991), vol. 1, pp. 158–165 (1991)

    Google Scholar 

  6. Spanoudakis, G., Zisman, A.: Inconsistency management in software engineering: Survey and open research issues. In: Handbook of Software Engineering and Knowledge Engineering, pp. 329–380. World Scientific, Singapore

    Google Scholar 

  7. Van Der Straeten, R., Mens, T., Simmonds, J., Jonckers, V.: Using description logic to maintain consistency between UML models. In: Stevens, P., Whittle, J., Booch, G. (eds.) UML 2003. LNCS, vol. 2863, pp. 326–340. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  8. Elaasar, M., Brian, L.: An overview of UML consistency management. Technical Report SCE-04-18 (August 2004)

    Google Scholar 

  9. Blanc, X., Mougenot, A., Mounier, I., Mens, T.: Detecting model inconsistency through operation-based model construction. In: Robby (ed.) Proc. Int’l Conf. Software Engineering (ICSE 2008), vol. 1, pp. 511–520. ACM, New York (2008)

    Google Scholar 

  10. Finkelstein, A., Kramer, J., Nuseibeh, B., Finkelstein, L., Goedicke, M.: Viewpoints: A Framework for Integrating Multiple Perspectives in System Development. International Journal of Software Engineering and Knowledge Engineering 2(1), 31–57 (1992)

    Article  Google Scholar 

  11. Egyed, A.: Fixing inconsistencies in UML design models. In: Proc. Int’l Conf. Software Engineering (ICSE 2007), pp. 292–301. IEEE Computer Society, Los Alamitos (2007)

    Chapter  Google Scholar 

  12. Blanc, X., Mougenot, A., Mounier, I., Mens, T.: Incremental detection of model inconsistencies based on model operations. In: van Eck, P., Gordijn, J., Wieringa, R. (eds.) CAiSE 2009. LNCS, vol. 5565, pp. 32–46. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  13. Voirin, J.L.: Model-driven architecture building for constrained systems. In: CSDM 2010 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Le Noir, J., Delande, O., Exertier, D., da Silva, M.A.A., Blanc, X. (2011). Operation Based Model Representation: Experiences on Inconsistency Detection. In: France, R.B., Kuester, J.M., Bordbar, B., Paige, R.F. (eds) Modelling Foundations and Applications. ECMFA 2011. Lecture Notes in Computer Science, vol 6698. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21470-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21470-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21469-1

  • Online ISBN: 978-3-642-21470-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics