Skip to main content

Abstract

We introduce the Upgrading Shortest Paths Problem, a new combinatorial problem for improving network connectivity with a wide range of applications from multicast communication to wildlife habitat conservation. We define the problem in terms of a network with node delays and a set of node upgrade actions, each associated with a cost and an upgraded (reduced) node delay. The goal is to choose a set of upgrade actions to minimize the shortest delay paths between demand pairs of terminals in the network, subject to a budget constraint. We show that this problem is NP-hard. We describe and test two greedy algorithms against an exact algorithm on synthetic data and on a real-world instance from wildlife habitat conservation. While the greedy algorithms can do arbitrarily poorly in the worst case, they perform fairly well in practice. For most of the instances, taking the better of the two greedy solutions accomplishes within 5% of optimal on our benchmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Alon, N., Moshkovitz, D., Safra, S.: Algorithmic construction of sets for k-restrictions. ACM Trans. Algorithms 2, 153–177 (2006)

    Article  MathSciNet  Google Scholar 

  2. Conrad, J., Gomes, C.P., van Hoeve, W.-J., Sabharwal, A., Suter, J.: Connections in networks: Hardness of feasibility versus optimality. In: Van Hentenryck, P., Wolsey, L.A. (eds.) CPAIOR 2007. LNCS, vol. 4510, pp. 16–28. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Crooks, K.R., Sanjayan, M. (eds.): Connectivity Conservation. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  4. Cushman, S.A., McKelvey, K.S., Schwartz, M.K.: Use of empirically derived source-destination models to map regional conservation corridors.. Conservation Biology 23(2), 368–376 (2009)

    Article  Google Scholar 

  5. Dilkina, B., Gomes, C.P.: Solving connected subgraph problems in wildlife conservation. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010. LNCS, vol. 6140, pp. 102–116. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Feige, U., Mirrokni, V.S.: Maximizing non-monotone submodular functions. In: FOCS, pp. 461–471 (2007)

    Google Scholar 

  7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)

    MATH  Google Scholar 

  8. Gomes, C.P.: Computational Sustainability: Computational methods for a sustainable environment, economy, and society. The Bridge, National Academy of Engineering 39(4) (Winter 2009)

    Google Scholar 

  9. Gomes, C.P., van Hoeve, W.-J., Sabharwal, A.: Connections in networks: A hybrid approach. In: Trick, M.A. (ed.) CPAIOR 2008. LNCS, vol. 5015, pp. 303–307. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Joseph, L.N., Maloney, R.F., Possingham, H.P.: Optimal allocation of resources among threatened species: a project prioritization protocol. Conservation Biology 23(2), 328–338 (2009)

    Article  Google Scholar 

  11. Krumke, S.: Improving Minimum Cost Spanning Trees by Upgrading Nodes. Journal of Algorithms 33(1), 92–111 (1999)

    Article  MathSciNet  Google Scholar 

  12. Lin, H., Bilmes, J.: Multi-document summarization via budgeted maximization of submodular functions. In: Human Language Technology Conference, NAACL/HLT (2010)

    Google Scholar 

  13. Naidoo, R., Balmford, A., Ferraro, P.J., Polasky, S., Ricketts, T.H., Rouget, M.: Integrating economic costs into conservation planning. Trends in Ecology & Evolution 21(12), 681–687 (2006)

    Article  Google Scholar 

  14. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions-I. Mathematical Programming 14(1), 265–294 (1978)

    Article  MathSciNet  Google Scholar 

  15. Paik, D., Sahni, S.: Network upgrading problems. Networks 26(1), 45–58 (1995)

    Article  MathSciNet  Google Scholar 

  16. Singleton, P.H., Gaines, W.L., Lehmkuhl, J.F.: Landscape permeability for large carnivores in washington: a geographic information system weighted-distance and least-cost corridor assessment. Res. Pap. PNW-RP-549: U.S. Dept. of Agric., Forest Service, Pacific Northwest Research Station (2002)

    Google Scholar 

  17. Taylor, P.D., Fahrig, L., Henein, K., Merriam, G.: Connectivity is a vital element of landscape structure. Oikos 73, 43–48 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dilkina, B., Lai, K.J., Gomes, C.P. (2011). Upgrading Shortest Paths in Networks. In: Achterberg, T., Beck, J.C. (eds) Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems. CPAIOR 2011. Lecture Notes in Computer Science, vol 6697. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21311-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21311-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21310-6

  • Online ISBN: 978-3-642-21311-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics