Skip to main content

Proof Certificates for Algebra and Their Application to Automatic Geometry Theorem Proving

  • Conference paper
Automated Deduction in Geometry (ADG 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6301))

Included in the following conference series:

Abstract

Integrating decision procedures in proof assistants in a safe way is a major challenge. In this paper, we describe how, starting from Hilbert’s Nullstellensatz theorem, we combine a modified version of Buchberger’s algorithm and some reflexive techniques to get an effective procedure that automatically produces formal proofs of theorems in geometry. The method is implemented in the Coq system but, since our specialised version of Buchberger’s algorithm outputs explicit proof certificates, it could be easily adapted to other proof assistants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, S.F., Constable, R.L., Howe, D.J., Aitken, W.E.: The Semantics of Reflected Proof. In: LICS, pp. 95–105. IEEE Computer Society, Los Alamitos (1990)

    Google Scholar 

  2. Buchberger, B.: Bruno Buchberger’s PhD thesis 1965: An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal. Journal of Symbolic Computation 41(3-4) (2006)

    Google Scholar 

  3. Chaieb, A., Wenzel, M.: Context aware calculation and deduction. In: Kauers, M., Kerber, M., Miner, R., Windsteiger, W. (eds.) MKM/CALCULEMUS 2007. LNCS (LNAI), vol. 4573, pp. 27–39. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Char, B.W., Fee, G.J., Geddes, K.O., Gonnet, G.H., Monagan, M.B.: A Tutorial Introduction to MAPLE. Journal of Symbolic Computation 2(2), 179–200 (1986)

    Article  Google Scholar 

  5. Chou, S.-C.: Mechanical geometry theorem proving. Kluwer Academic Publishers, Dordrecht (1987)

    Book  MATH  Google Scholar 

  6. Chou, S.-C., Gao, X.-S.: Ritt-Wu’s Decomposition Algorithm and Geometry Theorem Proving. In: Stickel, M.E. (ed.) CADE 1990. LNCS, vol. 449, pp. 207–220. Springer, Heidelberg (1990)

    Chapter  Google Scholar 

  7. Eisenbud, D.: Commutative Algebra: with a View Toward Algebraic Geometry. Graduate Texts in Mathematics. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  8. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases (f4). Journal of Pure and Applied Algebra 139(1/3), 61–88 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Giusti, M., Heintz, J., Morais, J.E., Morgenstern, J., Pardo, L.M.: Straight-line programs in geometric elimination theory. Journal of Pure and Applied Algebra 124(1/3), 101–146 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Grayson, D.R., Stillman, M.E.: Macaulay2, http://www.math.uiuc.edu/Macaulay2/

  11. Grégoire, B., Leroy, X.: A compiled implementation of strong reduction. In: International Conference on Functional Programming 2002, pp. 235–246. ACM Press, New York (2002)

    Google Scholar 

  12. Grégoire, B., Mahboubi, A.: Proving equalities in a commutative ring done right in coq. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 98–113. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Grégoire, B., Théry, L., Werner, B.: A computational approach to pocklington certificates in type theory. In: Hagiya, M. (ed.) FLOPS 2006. LNCS, vol. 3945, pp. 97–113. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Harrison, J.: HOL Light: A tutorial introduction. In: Srivas, M., Camilleri, A. (eds.) FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  15. Harrison, J.: Complex quantifier elimination in HOL. In: TPHOLs 2001: Supplemental Proceedings. Division of Informatics, pp. 159–174. University of Edinburgh (2001), published as Informatics Report Series EDI-INF-RR-0046

    Google Scholar 

  16. Harrison, J.: Automating elementary number-theoretic proofs using gröbner bases. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 51–66. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  17. Harrison, J.: Verifying nonlinear real formulas via sums of squares. In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 102–118. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  18. Harrison, J.: Handbook of Practical Logic and Automated Reasoning. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  19. Hohenwarter, M., Preiner, J.: Dynamic Mathematics with GeoGebra. Journal of Online Mathematics 7, ID 1448 (March 2007)

    Google Scholar 

  20. Kapur, D.: Geometry theorem proving using Hilbert’s Nullstellensatz. In: SYMSAC 1986: Proceedings of the Fifth ACM Symposium on Symbolic and Algebraic Computation, pp. 202–208. ACM, New York (1986)

    Chapter  Google Scholar 

  21. Kapur, D.: A refutational approach to geometry theorem proving. Artificial Intelligence 37(1-3), 61–93 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kapur, D.: Automated Geometric Reasoning: Dixon Resultants, Gröbner Bases, and Characteristic Sets. In: Wang, D. (ed.) ADG 1996. LNCS, vol. 1360, pp. 1–36. Springer, Heidelberg (1998)

    Google Scholar 

  23. Kreisel, G., Krivine, J.L.: Elements of Mathematical Logic (Model Theory). Studies in Logic and the Foundations of Mathematics. North-Holland, Amsterdam (1967)

    MATH  Google Scholar 

  24. Paulson, L.C.: Isabelle: A generic theorem prover. Journal of Automated Reasoning 828 (1994)

    Google Scholar 

  25. Pottier, L.: Connecting Gröbner Bases Programs with Coq to do Proofs in Algebra, Geometry and Arithmetics. In: Proceedings of the LPAR Workshops: Knowledge Exchange: Automated Provers and Proof Assistants, and The 7th International Workshop on the Implementation of Logics. CEUR Workshop Proceedings, vol. (418) (2008)

    Google Scholar 

  26. Robu, J.: Geometry Theorem Proving in the Frame of the Theorema Project. Tech. Rep. 02-23, RISC Report Series, University of Linz, Austria, phD Thesis (September 2002)

    Google Scholar 

  27. Théry, L.: A Machine-Checked Implementation of Buchberger’s Algorithm. Journal of Automated Reasoning 26(2) (2001)

    Google Scholar 

  28. Wiedijk, F.: Formalizing 100 Theorems, http://www.cs.ru.nl/~freek/100

  29. Wu, W.-T.: On the Decision Problem and the Mechanization of Theorem-Proving in Elementary Geometry. In: Automated Theorem Proving - After 25 Years, pp. 213–234. American Mathematical Society, Providence (1984)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grégoire, B., Pottier, L., Théry, L. (2011). Proof Certificates for Algebra and Their Application to Automatic Geometry Theorem Proving. In: Sturm, T., Zengler, C. (eds) Automated Deduction in Geometry. ADG 2008. Lecture Notes in Computer Science(), vol 6301. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21046-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21046-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21045-7

  • Online ISBN: 978-3-642-21046-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics