Skip to main content

MagnetoHemoDynamics Effect on Electrocardiograms

  • Conference paper
Functional Imaging and Modeling of the Heart (FIMH 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6666))

Abstract

In presence of a high magnetic field, the blood flow in the aorta induces an electrical potential which is responsible for an increase of the T-wave in the electrocardiogram (ECG). This phenomenon may perturb ECG-gated imaging. The aim of this numerical study is to reproduce this experimental observation through computer simulations. The proposed model consists of three components: magnetohydrodynamics (MHD) in the aorta, bidomain equations in the heart and electrical diffusion in the rest of the body. These models are strongly coupled together and solved with finite elements. Some numerical results without and with a magnetic field are presented and discussed. When the magnetic field increases from B = 0T to B = 3T, it is observed numerically that the potential in the lead I of the ECG doubles during the T-wave, reaching the level of the QRS peak. All numerical computations were performed on a realistic “averaged” human model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abi-Abdallah, D., Drochon, A., Robin, V., Fokapu, O.: Pulsed magnetohydrodynamic blood flow in a rigid vessel under physiological pressure gradient. Comput. Methods Biomech. Biomed. Engin. 12(4), 445–458 (2009)

    Article  Google Scholar 

  2. Abi-Abdallah, D., Robin, V., Drochon, A., Fokapu, O.: Alterations in human ecg due to the magnetohydrodynamic effect: a method for accurate r peak detection in the presence of high mhd artifacts. In: Conf. Proc. IEEE Eng. Med. Biol. Soc., pp. 1842–1845 (2007)

    Google Scholar 

  3. Boulakia, M., Cazeau, S., Fernández, M.A., Gerbeau, J.-F., Zemzemi, N.: Mathematical modeling of electrocardiograms: a numerical study. Ann. Biomed. Eng. 38(3), 1071–1097 (2010)

    Article  Google Scholar 

  4. Chapelle, D., Fernández, M.A., Gerbeau, J.-F., Moireau, P., Sainte-Marie, J., Zemzemi, N.: Numerical simulation of the electromechanical activity of the heart. In: Ayache, N., Delingette, H., Sermesant, M. (eds.) FIMH 2009. LNCS, vol. 5528, pp. 357–365. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Gerbeau, J.-F., Le Bris, C., Lelièvre, T.: Mathematical methods for the Magnetohydrodynamics of liquid metals. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2006)

    Book  MATH  Google Scholar 

  6. Guermond, J.L., Minev, P., Shen, J.: An overview of projection methods for incompressible flows. Comp. Meth. Appl. Mech. Engng. 195(44-47), 6011–6045 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gupta, A., Weeks, A.R., Richie, S.M.: Simulation of elevated T-waves of an ECG inside a static magnetic field (MRI). IEEE Transactions on Biomedical Engineering 55(7), 1890–1896 (2008)

    Article  Google Scholar 

  8. Kinouchi, Y., Yamaguchi, H., Tenforde, T.S.: Theoretical analysis of magnetic field interactions with aortic blood flow. Bioelectromagnetics 17, 21–32 (1996)

    Article  Google Scholar 

  9. Luo, R., Zhang, Y., Xia, L.: Electrophysiological modeling study of ECG T-wave alternation caused by ultrahigh static magnetic fields. In: 27th Annual International Conference of the Engineering in Medicine and Biology Society, IEEE-EMBS 2005, pp. 3012–3015. IEEE, Los Alamitos (2006)

    Google Scholar 

  10. Mitchell, C.C., Schaeffer, D.G.: A two-current model for the dynamics of cardiac membrane. Bulletin Math. Bio. 65, 767–793 (2003)

    Article  MATH  Google Scholar 

  11. Quarteroni, A., Valli, A.: Domain decomposition methods for partial differential equations. The Clarendon Press Oxford University Press, New York (1999); Oxford Science Publications

    MATH  Google Scholar 

  12. Sundnes, J., Lines, G.T., Cai, X., Nielsen, B.F., Mardal, K.-A., Tveito, A.: Computing the electrical activity in the heart. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  13. Tenforde, T.S.: Magnetically induced electric fields and currents in the circulatory system. Progress in Biophysics and Molecular Biology 87, 279–288 (2005)

    Article  Google Scholar 

  14. Tenforde, T.S., Gaffey, C.T., Moyer, B.R., Budinger, T.F.: Cardiovascular alterations in macaca monkeys exposed to stationary magnetic fields: experimental observations and theoretical analysis. Bioelectromagnetics 4, 1–9 (1983)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Martin, V., Drochon, A., Fokapu, O., Gerbeau, JF. (2011). MagnetoHemoDynamics Effect on Electrocardiograms. In: Metaxas, D.N., Axel, L. (eds) Functional Imaging and Modeling of the Heart. FIMH 2011. Lecture Notes in Computer Science, vol 6666. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21028-0_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21028-0_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21027-3

  • Online ISBN: 978-3-642-21028-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics