Skip to main content

Abstract

The theory of evolution has recently been in turmoil, with great interest in applying empirical information from EvoDevo, genomics, and ecology into the framework of quantitative genetic studies of evolution. Ciona is a small genus of sea squirts within the class Ascidiacea of the subphylum Tunicata, the sister group of vertebrates, a phylogenetic position that has contributed to fuel the interest in studying development and evolution in ascidians. Ciona species display several traits of evolutionary interest, e.g., conservative anatomy, high genetic polymorphism, cryptic speciation, metapopulation structure and invasive behavior. Some of these aspects may depend on the ecology of these marine animals, which display a great ecophysiological tolerance and unpredictable colonization capabilities. In addition, natural populations show the occurrence of spontaneous mutations with phylomimicking phenotypes. Here we review some key features of this talented marine organism that promise to provide insights in specific aspects of the expanded evolutionary biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andreakis N, Caputi L, Sordino P (2007) Characterization of highly polymorphic nuclear microsatellite loci from the ascidian Ciona intestinalis. Mol Ecol Notes 7:610–612

    Article  CAS  Google Scholar 

  • Ben-Shlomo R, Paz G, Rinkevich B (2006) Postglacialperiod and recent invasions shape the population genetics of botryllid ascidians along european atlantic coasts. Ecosystems 9:1118–1127

    Article  Google Scholar 

  • Boffelli D, Weer CV, Weng L, Lewis KD, Shoukry MI, Pachter L, Keys DN, Rubin EM (2004) Intraspecies sequence comparisons for annotating genomes. Genome Res 14:2406–2411

    Article  PubMed  CAS  Google Scholar 

  • Caputi L, Andreakis N, Mastrototaro F, Cirino P, Vassillo SP, Sordino P (2007) Cryptic speciation in a model invertebrate chordate. Proc Natl Acad Sci USA 104:9364–9369

    Article  PubMed  Google Scholar 

  • Caputi L, Andreakis N, Affinito O, Vassillo M, Procaccini G, Sordino P (submitted) Recent expansion and global divergence of Ciona intestinalis sp. A, a strong marine competitor

    Google Scholar 

  • Caputi L, Borra M, Andreakis N, Biffali E, Sordino P (2008) SNPs and Hox gene mapping in Ciona intestinalis. BMC Genomics 9:39–50

    Article  PubMed  Google Scholar 

  • Carman MR, Bullard SG, Donnelly JP (2007) Water quality, nitrogen pollution, and ascidian diversity in coastal waters of southern Massachusetts, USA. J Exp Mar Biol Ecol 342:175–178

    Article  Google Scholar 

  • Carver CE, Chisholm A, Mallet AL (2003) Strategies to mitigate the impact of Ciona intestinalis (L.) biofouling on shellfish production. J Shellfish Res 22:621–631

    Google Scholar 

  • Charmantier A, Garant D (2005) Environmental quality and evolutionary potential: lessons from wild populations. Proc R Soc Lond B 272:1415–1425

    Article  Google Scholar 

  • Cirino P, Toscano A, Caramiello D et al (2002) Laboratory culture of the ascidian Ciona intestinalis (L.): a model system for molecular developmental biology research. Mar Mod Elec Rec. http://www.mbl.edu/html/BB/MMER/CIR/CirCon.html

  • Darling JA, Folino-Rorem NC (2009) Genetic analysis across different spatial scales reveals multiple dispersal mechanisms for the invasive hydrozoan Cordylophora in the Great Lakes. Mol Ecol 18:4827–4840

    Article  PubMed  Google Scholar 

  • Dehal P, Satou Y, Campbell RK et al (2002) The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 298:2157–2167

    Article  PubMed  CAS  Google Scholar 

  • Dupont L, Viard F, Dowell MJ, Wood C, Bishop JDD (2009) Fine- and regional-scale genetic structure of the exotic ascidian Styela clava (Tunicata) in southwest England, 50 years after its introduction. Mol Ecol 18:442–453

    Article  PubMed  CAS  Google Scholar 

  • Dupont L, Viard F, Davis MH, Nishikawa T, Bishop JDD (2010) Pathways of spread of the introduced ascidian Styela clava (Tunicata) in Northern Europe, as revealed by microsatellite markers. Biol Invasions 12:2707–2721

    Article  Google Scholar 

  • Dybern BI (1965) The life cycle of Ciona intestinalis (L.) f. typica in relation to the environmental temperature. Oikos 16:109–131

    Article  Google Scholar 

  • Everett RA (2000) Patterns and pathways of biological invasions. Trends Ecol Evol 15:177–178

    Article  Google Scholar 

  • Fields S, Johnston M (2005) Whither model organism research? Science 307:1885–1886

    Article  PubMed  CAS  Google Scholar 

  • Fisher RA (1930) The genetical theory of natural selection. Oxford University Press, Oxford

    Google Scholar 

  • Goldschmidt R (1940) The material basis of evolution. Yale University Press, New Haven

    Google Scholar 

  • Goldstien SJ, Schiel DR, Gemmell NJ (2010) Regional connectivity and coastal expansion: differentiating pre-border and post-border vectors for the invasive tunicate Styela clava. Mol Ecol 19:874–885

    Article  PubMed  CAS  Google Scholar 

  • Havenhand JN, Svane I (1991) Roles of hydrodynamics and larval behaviour in determining spatial aggregation in the tunicate Ciona intestinalis. Mar Ecol Prog Ser 68:271–276

    Article  Google Scholar 

  • Hedgecock D, Li G, Hubert S, Bucklin K, Ribes V (2004) Widespread null alleles and poor cross-species amplification of microsatellite DNA loci cloned from the Pacific oyster, Crassostrea gigas. J Shellfish Res 23:379–385

    Google Scholar 

  • Hendrickson C, Christiaen L, Deschet K et al (2004) Culture of adult ascidians and ascidian genetics. Methods Cell Biol 74:143–170

    Chapter  Google Scholar 

  • Holland BS (2000) Genetics of marine bioinvasions. Hydrobiologia 420:63–71

    Article  CAS  Google Scholar 

  • Hoshino Z, Nishikawa T (1985) Taxonomic studies of Ciona intestinalis (L.) and its allies. Publ Seto Mar Biol Lab 30:61–79

    Google Scholar 

  • Howes S, Herbinger CM, Darnell P, Vercaemer B (2007) Spatial and temporal patterns of recruitment of the tunicate Ciona intestinalis on a mussel farm in Nova Scotia, Canada. J Exp Mar Biol Ecol 342:85–92

    Article  Google Scholar 

  • Jeffery WR (2004) Evolution and development of brain sensory organs in molgulid ascidians. Evol Dev 6:170–179

    Article  PubMed  Google Scholar 

  • Jesse R, Pfenninger M, Fratini S et al (2009) Disjunct distribution of the Mediterranean freshwater crab Potamon fluviatile - Natural expansion or human introduction? Biol Invasions 11:2209–2221

    Article  Google Scholar 

  • Joly JS, Kano S, Matsuoka T, Auger H, Hirayama K et al (2007) Culture of Ciona intestinalis in closed systems. Dev Dyn 236:1832–1840

    Google Scholar 

  • Kano S (2007) Initial stage of genetic mapping in Ciona intestinalis. Dev Dyn 236:1768–1781

    Article  PubMed  CAS  Google Scholar 

  • Kano S, Chiba S, Satoh N (2001) Genetic relatedness and variability in inbred and wild populations of the solitary ascidian Ciona intestinalis revealed by arbitrarily primed polymerase chain reaction. Mar Biotechnol 3:58–67

    Article  PubMed  CAS  Google Scholar 

  • Kano S, Satoh N, Sordino P (2006) Primary genetic linkage maps of the ascidian, Ciona intestinalis. Zoolog Sci 23:31–39

    Article  PubMed  CAS  Google Scholar 

  • Kawamura K, Fujita H, Nakauchi M (1987) Cytological characterization of self incompatibility in gametes of the ascidian, Ciona intestinalis. Dev Growth Diff 29:627–642

    Article  Google Scholar 

  • Lambert G (2001) A global overview of ascidian introductions and their possible impact on the endemic fauna. In: Sawada H, Yokosawa H, Lambert CC (eds) The biology of ascidians. Springer, Tokyo

    Google Scholar 

  • Lambert G (2007) Invasive sea squirts: a growing global problem. J Exp Mar Biol Ecol 342:3–4

    Article  Google Scholar 

  • Lambert CC, Lambert G (1998) Non indigenous ascidians in southern California harbors and marinas. Mar Biol 130:675–688

    Article  Google Scholar 

  • Lee CE (2002) Evolutionary genetics of invasive species. Trends Ecol Evol 17:386–391

    Article  Google Scholar 

  • Marin MG, Bressan M, Beghi L, Brunetti R (1987) Thermo-aline tolerance of Ciona intestinalis (L., 1767) at different developmental stages. Cah Biol Mar 28:47–57

    Google Scholar 

  • Marshall DJ, Keough MJ (2003) Effects of settler and density on early post-settlement survival of Ciona intestinalis in the field. Mar Ecol Prog Ser 259:139–144

    Article  Google Scholar 

  • Nei M, Maruyama T, Chakraborty R (1975) Bottleneck effect and genetic-variability in populations. Evolution 29:1–10

    Article  Google Scholar 

  • Nydam ML, Harrison R (2007) Genealogical relationships within and among shallow-water Ciona species (Ascidiacea). Mar Biol 151:1839–1847

    Article  Google Scholar 

  • Nydam ML, Harrison RG (2010) Polymorphism and divergence within the ascidian genus Ciona. Mol Phylogenet Evol 56:718–726

    Article  PubMed  Google Scholar 

  • Nydam ML, Harrison RG (2011a) Introgression despite substantial divergence in a broadcast spawning marine invertebrate. Evolution 65:429–442

    Article  PubMed  Google Scholar 

  • Nydam ML, Harrison RG (2011b) Reproductive protein evolution in two cryptic species of marine chordate. BMC Evol Biol 11:18

    Article  PubMed  CAS  Google Scholar 

  • Oliveira Marins de F, Silva Oliveira da C, Viera Maciel NM, Skinner LF (2009) Reinclusion of Ciona intestinalis (Ascidiacea: Cionidae) in Brazil –a methodological view. JMBA2 – Biodivers Rec. 1–5

    Google Scholar 

  • Palumbi SR (1992) Marine speciation on a small planet. Trends Ecol Evol 7:114–118

    Article  PubMed  CAS  Google Scholar 

  • Pérès JM (1952) Recherches sur le cycle sexuel de «Ciona intestinalis (L.)». Arch Anat Microsc Morphol Exp 41:153–183

    Google Scholar 

  • Petersen JK (2007) Ascidian suspension feeding. J Exp Mar Biol Ecol 342:127–137

    Article  Google Scholar 

  • Petersen JK, Svane I (1995) Larval dispersal in the ascidian Ciona intestinalis (L.). Evidence for a closed population. J Exp Mar Biol Ecol 186:89–102

    Article  Google Scholar 

  • Petersen JK, Schou O, Thor P (1995) Growth and energetics in the ascidian Ciona intestinalis. Mar Ecol Prog Ser 120:175–184

    Article  Google Scholar 

  • Pimentel D, Lach L, Zuniga R, Morrison D (2000) Environmental and economic costs of non-indigenous species in the United States. Bioscience 50:53–65

    Article  Google Scholar 

  • Procaccini G, Pischetola M, Di Lauro R (2000) Isolation and characterization of microsatellite loci in the ascidian Ciona intestinalis (L.). Mol Ecol 9:1924–1926

    Article  PubMed  CAS  Google Scholar 

  • Ramsay A, Davidson J, Landry T, Arsenault G (2008) Process of invasiveness among exotic tunicates in Prince Edward Island, Canada. Biol Invasions 10:1311–1316

    Article  Google Scholar 

  • Ramsay A, Davidson J, Bourque D, Stryhn H (2009) Recruitment patterns and population development of the invasive ascidian Ciona intestinalis in Prince Edward Island, Canada. Aquat Invasions 4:169–176

    Article  Google Scholar 

  • Riisgard HU, Jensen AS, Jürgensen C (1998) Hydrography, near-bottom currents and grazing impact of the filter-feeding ascidian Ciona intestinalis in a Danish fjord. Ophelia 49:1–16

    Article  Google Scholar 

  • Rosati F, Santis RD (1978) Studies on fertilization in the ascidians. I. Self-sterility and specific recognition between gametes of Ciona intestinalis. Exp Cell Res 112:111–119

    Article  PubMed  CAS  Google Scholar 

  • Sabbadin A (1958) Il ciclo biologico di Ciona intestinalis (L.), Molgula manhattensis (De Kay) e Styela plicata (Lesuer) nella laguna veneta. Arch Oceanogr Limnol 11:1–28

    Google Scholar 

  • Sasakura Y, Oogai Y, Matsuoka T, Satoh N, Awazu S (2007) Transposon mediated transgenesis in a marine invertebrate chordate: Ciona intestinalis. Genome Biol 8(Suppl 1):S3

    Article  PubMed  Google Scholar 

  • Satoh N (1994) Developmental biology of ascidians. Cambridge University Press, New York

    Google Scholar 

  • Schmidt GH (1983) The hydroid Tubularia larynx causing “bloom” of the ascidians Ciona intestinalis and Ascidiella aspersa. Mar Ecol Prog Ser 12:103–105

    Article  Google Scholar 

  • Schmidtke J, Engel W (1980) Gene diversity in tunicate populations. Biochem Genet 18:503–508

    Article  PubMed  CAS  Google Scholar 

  • Small KS, Brudno M, Hill MM, Sidow A (2007a) A haplome alignment and reference sequence of the highly polymorphic Ciona savignyi genome. Genome Biol 8:R41

    Article  PubMed  Google Scholar 

  • Small KS, Brudno M, Hill MM, Sidow A (2007b) Extreme genomic variation in a natural population. Proc Natl Acad Sci USA 104:5698–5703

    Article  PubMed  CAS  Google Scholar 

  • Sordino P, Andreakis N, Brown ER et al (2008) Natural variation of model mutant phenotypes in Ciona intestinalis. PLoS One 3:e2344

    Article  PubMed  Google Scholar 

  • Sorte CJ, Williams SL, Carlton JT (2010) Marine range shifts and species introductions: comparative spread rates and community impacts. Global Ecol Biogeogr 19:303–316

    Article  Google Scholar 

  • Stinchcombe JR, Hoekstra HE (2007) Combining population genomics and quantitative genetics: finding the genes underlying ecologically important traits. Heredity 100:158–170

    Article  PubMed  Google Scholar 

  • Suzuki M, Nishikawa T, Bird A (2005) Genomic approaches reveal unexpected genetic divergence within Ciona intestinalis. J Mol Evol 61:627–635

    Article  PubMed  CAS  Google Scholar 

  • Svane I, Havenhand JN (1993) Spawning and dispersal in Ciona intestinalis (L.). P.S.Z.N.I. Mar Ecol 14:53–66

    Article  Google Scholar 

  • Therriault TW, Herborg L (2008a) A qualitative biological risk assessment for vase tunicate Ciona intestinalis in Canadian waters: using expert knowledge. ICES J Mar Sci 65:781–787

    Article  Google Scholar 

  • Therriault TW, Herborg L (2008b) Predicting the potential distribution of the vase tunicate Ciona intestinalis in Canadian waters: informing a risk assessment. ICES J Mar Sci 65:788–794

    Article  Google Scholar 

  • Veeman MT, Nakatani Y, Hendrickson C, Ericson V, Lin C, Smith WC (2008) chongmague reveals an essential role for laminin-mediated boundary formation in chordate convergence and extension movements. Development 135:33–41

    Article  PubMed  CAS  Google Scholar 

  • Whitlatch RB, Osman RW, Frese A (1995) The ecology of two introduced marine ascidians and their effects of epifaunal organisms in Long Island Sound. In: Balcom N (ed) Proceedings of the Northeast Conference on Non-Indigenous Aquatic Nuisance Species: Reg Conf, pp 29–48

    Google Scholar 

  • Wilson AJ, Pemberton JM, Pilkington JG et al (2006) Environmental coupling of selection and heritability limits evolution. PLoS Biol 4:e216

    Article  PubMed  CAS  Google Scholar 

  • Zhan A, Bao Z, Hui M et al (2007) Inheritance pattern of EST-SSRs in self-fertilized larvae of the bay scallop Argopecten irradians. Ann Zoolog Fennici 44:259–268

    Google Scholar 

  • Zhan A, Macisaac HJ, Cristescu ME (2010) Invasion genetics of the Ciona intestinalis species complex: from regional endemism to global homogeneity. Mol Ecol 19:4678–4694

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Procaccini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Procaccini, G., Affinito, O., Toscano, F., Sordino, P. (2011). A New Animal Model for Merging Ecology and Evolution. In: Pontarotti, P. (eds) Evolutionary Biology – Concepts, Biodiversity, Macroevolution and Genome Evolution. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20763-1_6

Download citation

Publish with us

Policies and ethics