Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

Carbon nanofibers are sp2-based linear, noncontinuous filaments that are different from carbon fibers, which are continuous with diameter of several micrometers. This chapter provides a review on the growth, structural properties, and practical applications of carbon nanofibers as compared with those of conventional carbon fibers. Carbon nanofibers can be produced via catalytic chemical vapor deposition (CVD) as well as the combination of electrospinning of organic polymer and thermal treatment. The amount of commercially available carbon nanofiber worldwide is ca. 500 t/year. Carbon nanofibers exhibit high specific area, flexibility, and superstrength due to their nanosized diameter, which allows them to be used in electrode materials of energy storage devices, hybrid-type filler in carbon-fiber-reinforced plastics, and bone tissue scaffold. It is envisaged that carbon nanofibers will be key materials of green science and technology through a close combination with carbon fibers and carbon nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

1-D:

one-dimensional

2-D:

two-dimensional

AC:

alternating current

CO:

cuboctahedron

CV:

crystal violet

CVD:

chemical vapor deposition

DC:

direct current

DMF:

dimethylformamide

ED:

electron diffraction

FFT:

fast Fourier transform

HEV:

hybrid electric vehicle

HRTEM:

high-resolution transmission electron microscopy

HTT:

heat treatment temperature

HWHM:

half-width at half-maximum

LIB:

lithium-ion battery

MPCF:

mesophase pitch-based carbon fiber

PAN:

polyacrylonitrile

PMMA:

poly-methyl methacrylate

R&D:

research and development

SEM:

scanning electron microscopy

TEM:

transmission electron microscopy

VGCF:

vapor-grown carbon fiber

XRD:

x-ray diffraction

rhBMP-2:

recombinant human bone morphogenic protein-2

References

  1. J.B. Donnet, R.C. Bansal: Carbon Fibers (Marcel Dekker, New York 1984)

    Google Scholar 

  2. L.H. Peebles: Carbon Fibers (CRC, Boca Raton 1994)

    Google Scholar 

  3. D.D.L. Chung: Carbon Fiber Composites (Butterworth Heinemann, Boston 1994)

    Google Scholar 

  4. M.S. Dresselhaus, G. Dresselhaus, K. Sugihara, I.L. Spain, H.A. Goldberg: Graphite Fiber and Filaments (Springer, Berlin Heidelberg 1988)

    Book  Google Scholar 

  5. A. Oberlin, M. Endo, T. Koyama: Filamentous growth of carbon through benzene decomposition, J. Cryst. Growth 32, 335–349 (1976)

    Article  CAS  Google Scholar 

  6. R.T.K. Baker: Catalytic growth of carbon filaments, Carbon 27, 315–323 (1989)

    Article  CAS  Google Scholar 

  7. G.G. Tibbetts: Why are carbon filaments tubular?, J. Cryst. Growth 66, 632–637 (1984)

    Article  CAS  Google Scholar 

  8. M. Endo: Grow carbon fibers in the vapor phase, Chem. Technol. 18, 568–576 (1988)

    CAS  Google Scholar 

  9. N.M. Rodriguez: A review of catalytically grown carbon nanofibers, J. Mater. Res. 8, 3233–3250 (1993)

    Article  CAS  Google Scholar 

  10. G.G. Tibbetts: Vapor-grown carbon fibers: Status and prospects, Carbon 27, 745–747 (1989)

    Article  Google Scholar 

  11. S. Iijima: Helical microtubules of graphitic carbon, Nature 354, 56–58 (1991)

    Article  CAS  Google Scholar 

  12. M.S. Dresselhaus, G. Dresselhaus, P. Eklund: Science of Fullerenes and Carbon Nanotubes (Academic, New York 1996)

    Google Scholar 

  13. R. Saito, G. Dresselhaus, D.S. Dresselhaus: Physical Properties of Carbon Nanotubes (Imperial College Press, London 1998)

    Book  Google Scholar 

  14. T.W. Ebbesen: Carbon Nanotubes: Preparation and Properties (CRC, London 1997)

    Google Scholar 

  15. N.M. Rodriguez, A. Chambers, R.T.K. Baker: Catalytic engineering of carbon nanostructures, Langmuir 11, 3862–3866 (1995)

    Article  CAS  Google Scholar 

  16. M. Endo, Y.A. Kim, T. Fukai, T. Hayashi, K. Oshida, M. Terrones, T. Yanagisawa, S. Higaki, M.S. Dresselhaus: Structural characterization of cup-stacked type nanofibers with an entire hollow core, Appl. Phys. Lett. 80, 1267–1269 (2002)

    Article  CAS  Google Scholar 

  17. S.H. Yoon, S. Lim, Y. Song, Y. Ota, W.M. Qiao, A. Tanaka, I. Mochida: KOH activation of carbon nanofibers, Carbon 42, 1723–1729 (2004)

    Article  CAS  Google Scholar 

  18. S.H. Yoon, C.W. Park, H.J. Yang, Y. Korai, I. Mochida, R.T.K. Baker, N.M. Rodriguez: Novel carbon nanofibers of high graphitization as anodic materials for lithium ion secondary batteries, Carbon 42, 21–32 (2004)

    Article  CAS  Google Scholar 

  19. Q.F. Liu, W.C. Ren, Z.G. Cheng: Semiconducting properties of cup-stacked carbon nanotubes, Carbon 47, 731–736 (2009)

    Article  CAS  Google Scholar 

  20. M. Endo, Y.A. Kim, M. Ezaka, K. Osada, T. Yanagisawa, T. Hayashi, M. Terrones, M.S. Dresselhaus: Selective and efficient impregnation of metal nanoparticles on cup-stacked-type nanofibers, Nano Lett. 3, 723–726 (2003)

    Article  CAS  Google Scholar 

  21. Y.K. Choi, Y. Gotoh, K.I. Sugimoto, S.M. Song, T. Yanagisawa, M. Endo: Processing and characterization of epoxy nanocomposites reinforced by cup-stacked carbon nanotubes, Polymer 46, 11489–11498 (2005)

    Article  CAS  Google Scholar 

  22. T. Yokozeki, Y. Iwahori, S. Ishiwata: Matrix cracking behaviors in carbon fiber/epoxy laminates filled with cup-stacked carbon nanotubes (CSCNTs), Compos. A: Appl. Sci. Manuf. 38, 917–924 (2007)

    Article  CAS  Google Scholar 

  23. T. Yokozeki, Y. Iwahori, S. Ishiwata, K. Enomoto: Mechanical properties of CFRP laminates manufactured from unidirectional prepregs using CSCNT-dispersed epoxy, Compos. A: Appl. Sci. Manuf. 38, 2121–2130 (2007)

    Article  CAS  Google Scholar 

  24. T. Yokozeki, Y. Iwahori, M. Ishibashi, T. Yanagisawa, K. Imai, M. Arai, T. Takayashi, K. Enomoto: Fracture toughness improvement of CFRP laminates by dispersion of cup-stacked carbon nanotubes, Compos. Sci. Technol. 69, 2268–2273 (2009)

    Article  CAS  Google Scholar 

  25. K. Saito, M. Ohtani, F. Fukuzumi: Electron-transfer reduction of cup-stacked carbon nanotubes affording cup-shaped carbons with controlled diameter and size, J. Am. Chem. Soc. 128, 14216–14217 (2006)

    Article  CAS  Google Scholar 

  26. T. Hasobe, H. Murata, P.V. Kamat: Photoelectrochemistry of stacked-cup carbon nanotube film: Tube-length dependence and charge transfer with excited porphyrin, J. Phys. Chem. C 111, 16626–16634 (2007)

    Article  CAS  Google Scholar 

  27. S. Ramakrishna, K. Fujihara, W.-E. Teo, T.-C. Lim, Z. Ma: An Introduction to Electrospinning and Nanofibers (World Scientific, Singapore 2005)

    Book  Google Scholar 

  28. D.H. Renecker, A.L. Yarine, H. Fong, S. Koombhongse: Bending instability of electrically charged liquid jets of polymer solutions in electrospinning, J. Appl. Phys. 87, 4531 (2000)

    Article  Google Scholar 

  29. Y.M. Shin, M.M. Hohman, G.C. Martin: Processing and microstructural characterization of porous biocompatible protein polymer thin films, Polymer 40, 7397–7407 (1999)

    Article  Google Scholar 

  30. I.D. Norris, M.M. Shaker, F.K. Ko, A.G. MacDiarmid: Electrostatic fabrication of ultrafine conducting fibers: polyaniline/polyethylene oxide blends, Synth. Met. 114, 109–114 (2000)

    Article  CAS  Google Scholar 

  31. F. Ko, Y. Gogotsi, A. Ali, N. Naguib, H. Ye, G. Yang, C. Li, P. Willis: Electrospinning of continuous carbon nanotube-filled nanofiber yarns, Adv. Mater. 15, 1161–1165 (2003)

    Article  CAS  Google Scholar 

  32. C. Vozzi, C.J. Flaim, F. Bianchi, A. Ahluwalia, S. Bhatia: Microfabricated PLGA scaffolds: a comparative study for application to tissue engineering, Mater. Sci. Eng. 20, 43–47 (2002)

    Article  Google Scholar 

  33. C. Kim, K.S. Yang: Electrochemical properties of carbon nanofiber web as an electrode for supercapacitor prepared by electrospinning, Appl. Phys. Lett. 83, 1216–1218 (2003)

    Article  CAS  Google Scholar 

  34. R. Dersch, M. Steinhart, U. Boudriot, A. Greiner, J.H. Wendorff: Nanoprocessing of polymers: applications in medicine, sensors, catalysis, photonics, Polym. Adv. Technol. 16, 276–282 (2005)

    Article  CAS  Google Scholar 

  35. K. Aoki, Y. Usui, N. Narita, N. Ogiwara, N. Iashigaki, K. Nakamura, H. Kato, K. Sano, N. Ogiwara, K. Kametani, C. Kim, S. Taruta, Y.A. Kim, M. Endo, N. Saito: A thin carbon fiber web as a scaffold for bone tissue regeneration, Small 5, 1540–1546 (2009)

    Article  CAS  Google Scholar 

  36. C. Kim, K.S. Yang, M. Kojima, K. Yoshida, Y.J. Kim, Y.A. Kim, M. Endo: Fabrication of electrospun-derived carbon nanofiber web for the anode material of lithium-ion secondary batteries, Adv. Funct. Mater. 16, 2393–2397 (2006)

    Article  CAS  Google Scholar 

  37. R. Bacon: Production of graphite whiskers, J. Appl. Phys. 31, 283–290 (1960)

    Article  Google Scholar 

  38. M. Endo, R. Saito, M.S. Dresselhaus, G. Dresselhaus: From carbon fibers to carbon nanotubes. In: Carbon Nanotubes, ed. by T.W. Ebbesen (CRC, New York 1997) pp. 35–105

    Google Scholar 

  39. A. Oberlin: High-resolution TEM studies of carbonization and graphitization, Chem. Phys. Carbon 22, 1–135 (1989)

    CAS  Google Scholar 

  40. L.H. Peebles, Y.G. Yanovsky, A.G. Sirota, V.V. Bogdanov, P.M. Levit: Mechanical properties of carbon fibers. In: Carbon Fibers, ed. by J.B. Donnet (Marcel Dekker, New York 1998) pp. 311–370

    Google Scholar 

  41. M. Endo, Y.A. Kim, T. Hayashi, K. Nishimura, T. Matushita, K. Miyashita, M.S. Dresselhaus: Vapor-grown carbon fibers (VGCFs): basic properties and battery application, Carbon 39, 1287–1297 (2001)

    Article  CAS  Google Scholar 

  42. M. Endo, K. Takeuchi, K. Kobori, K. Takahashi, H.W. Kroto, A. Sarkar: Pyrolytic carbon nanotubes from vapor-grown carbon fibers, Carbon 33, 873–881 (1995)

    Article  CAS  Google Scholar 

  43. H.J. Dai, A.G. Rinzler, P. Nikolaev, A. Thess, D.T. Colbert, R.E. Smalley: Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide, Chem. Phys. Lett. 260, 471–475 (1996)

    Article  CAS  Google Scholar 

  44. C.N.R. Rao, R. Sen, B.C. Satisshkumar, A. Govindaraj: Large aligned-nanotube bundles from ferrocene pyrolysis, Chem. Commun. 15, 1525–1526 (1998)

    Article  Google Scholar 

  45. R. Andrews, D. Jacques, A.M. Rao, F. Derbyshire, D. Qian, X. Fan, E.C. Dickey, J. Chen: Continuous production of aligned carbon nanotubes: a step closer to commercial realization, Chem. Phys. Lett. 303, 467–474 (1999)

    Article  CAS  Google Scholar 

  46. R. Kamalakaran, M. Terrones, T. Seeger, P. Kohler-Redlich, M. Ruhle, Y.A. Kim, T. Hayashi, M. Endo: Synthesis of thick and crystalline nanotube arrays by spray pyrolysis, Appl. Phys. Lett. 77, 3385–3387 (2000)

    Article  CAS  Google Scholar 

  47. M. Endo, Y.A. Kim, Y. Fukai, T. Hayashi, M. Terrones, H. Terrones, M.S. Dresselhaus: Comparison study of semi-crystalline and highly crystalline multiwalled carbon nanotubes, Appl. Phys. Lett. 79, 1531–1533 (2001)

    Article  CAS  Google Scholar 

  48. H. Terrones, T. Hayashi, M. Munoz-Navia, M. Terrones, Y.A. Kim, N. Grobert, R. Kamalakaran, J. Dorantes-Davila, R. Escudero, M.S. Dresselhaus, M. Endo: Graphitic cones in palladium catalysed carbon nanofibers, Chem. Phys. Lett. 343, 241–250 (2001)

    Article  CAS  Google Scholar 

  49. J.F. Despres, E. Daguerre, K. Lafdi: Flexibility of graphene layers in carbon nanotubes, Carbon 33, 87–89 (1995)

    Article  CAS  Google Scholar 

  50. M. Kosaka, T.W. Ebbesen, H. Hiura, K. Tanigaki: Annealing effect on carbon nanotubes. An ESR study, Chem. Phys. Lett. 233, 47–51 (1995)

    Article  CAS  Google Scholar 

  51. M. Endo, K. Nishimura, Y.A. Kim, K. Hakamada, T. Matushita, M.S. Dresselhaus, G. Dresselhaus: Raman spectroscopic characterization of submicron vapor-grown carbon fibers and carbon nanofibers obtained by pyrolyzing hydrocarbons, J. Mater. Res. 14, 4474–4477 (1999)

    Article  CAS  Google Scholar 

  52. M. Endo, Y.A. Kim, T. Hayashi, T. Yanagisawa, H. Muramatsu, M. Ezaka, H. Terrones, M. Terrones, M.S. Dresselhaus: Microstructural changes induced in stacked cup carbon nanofibers by heat treatment, Carbon 41, 1941–1947 (2003)

    Article  CAS  Google Scholar 

  53. J. Campos-Delgado, H. Farhat, Y.A. Kim, A. Reina, J. Kong, M. Endo, H. Muramatsu, T. Hayashi, H. Terrones, M. Terrones, M.S. Dresselhaus: Resonant Raman study on bulk and isolated graphitic nanoribbons, Small 5, 2698–2702 (2009)

    Article  CAS  Google Scholar 

  54. G. Katagiri, H. Ishida, A. Ishitani: Raman spectra of graphite edge planes, Carbon 26, 565–571 (1988)

    Article  CAS  Google Scholar 

  55. M. Endo, T. Hayashi, S.H. Hong, T. Enoki, M.S. Dresselhaus: Scanning tunneling microscope study of boron-doped highly oriented pyrolytic graphite, J. Appl. Phys. 90, 5670–5674 (2001)

    Article  CAS  Google Scholar 

  56. P.G. Collins, M. Hersam, M. Arnold, R. Martel, P. Avouris: Current saturation and electrical breakdown in multiwalled carbon nanotubes, Phys. Rev. Lett. 86, 3128–3131 (2001)

    Article  CAS  Google Scholar 

  57. A.P. Graham, G.S. Duesberg, R.V. Seidel, M. Liebau, E. Unger, W. Pamler, F. Kreupl, W. Hoenlein: Carbon nanotubes for microelectronics?, Small 1, 382–390 (2005)

    Article  CAS  Google Scholar 

  58. B.Q. Wei, R. Vajtai, P.M. Ajayan: Reliability and current carrying capacity of carbon nanotubes, Appl. Phys. Lett. 79, 1172–1174 (2001)

    Article  CAS  Google Scholar 

  59. B.T. Kelly: Physics of Graphite (Springer, New York 1981)

    Google Scholar 

  60. N. Kurita, M. Endo: Molecular orbital calculations on electronic and Li-adsorption properties of sulfur-, phosphorus- and silicon-substituted disordered carbons, Carbon 40, 253–260 (2002)

    Article  CAS  Google Scholar 

  61. H. Jiang, C. Wu, A. Zhang, P. Yang: Structural characteristics of polyacrylonitrile (PAN) fibers during oxidative stabilization, Compos. Sci. Technol. 29, 33–44 (1987)

    Article  CAS  Google Scholar 

  62. H. Ogawa, K. Saito: Oxidation behavior of polyacrylonitrile fibers evaluated by new stabilization index, Carbon 33, 783–788 (1995)

    Article  CAS  Google Scholar 

  63. P.L. Walker: Chemistry and Physics of Carbon (Marcel Dekker, New York 1971)

    Google Scholar 

  64. R.J. Nemanichi, S.A. Solin: First- and second-order Raman scattering from finite-size crystals of graphite, Phys. Rev. B 20, 392–401 (1970)

    Article  Google Scholar 

  65. K. Kaneko, J. Imai: Adsorption of NO2 on activated carbon fibers, Carbon 27, 954–955 (1989)

    Article  CAS  Google Scholar 

  66. S.H. Joo, S.J. Choi, I.W. Oh, J.Y. Kwak, Z. Liu, O. Terasaki, R. Ryoo: Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles, Nature 412, 169–172 (2001)

    Article  CAS  Google Scholar 

  67. L. Schlapbach, A. Zuttel: Hydrogen-storage materials for mobile applications, Nature 414, 353–358 (2001)

    Article  CAS  Google Scholar 

  68. M. Terrones: Science and technology of the twenty-first century: synthesis, propertypes, and applications of carbon nanotubes, Annu. Rev. Mater. Res. 33, 419–501 (2003)

    Article  CAS  Google Scholar 

  69. E. Bekyarova, V. Murata, M. Yudasaka, D. Kasuya, S. Iijima, H. Tanaka, K. Kaneko: Single-wall nanostructured carbon for methane storage, J. Phys. Chem. B 107, 4681–4684 (2003)

    Article  CAS  Google Scholar 

  70. H. Take, T. Matsumoto, K. Yoshino: Anodic properties of porous carbon with periodic nanostructure, Synth. Met. 135-136, 731–732 (2003)

    Article  CAS  Google Scholar 

  71. R.C. Bansal, J.B. Donnet, H.F. Stoeckli: Active Carbon (Marcel Dekker, New York 1988)

    Google Scholar 

  72. Z. Yang, Y. Xia, R. Mokaya: Zeolite ZSM-5 with unique supermicropores synthesized using mesoporous carbon as a template, Adv. Mater. 16, 727–732 (2004)

    Article  CAS  Google Scholar 

  73. J.W. Lee, S.J. Han, T.H. Hyeon: Synthesis of new nanoporous carbon materials using nanostructured silica materials as templates, J. Mater. Chem. 14, 478–486 (2004)

    Article  CAS  Google Scholar 

  74. A.B. Fuertes: A low-cost synthetic route to mesoporous carbons with narrow pore size distributions and tunable porosity through silica xerogel templates, Chem. Mater. 16, 449–455 (2004)

    Article  CAS  Google Scholar 

  75. J. Ozaki, N. Endo, W. Ohizumi, K. Igarashi, M. Nakahara, A. Oya: Novel preparation method for the production of mesoporous carbon fiber from a polymer blend, Carbon 35, 1031–1033 (1997)

    Article  CAS  Google Scholar 

  76. A. Oya, N. Kasahara: Preparation of thin carbon fibers from phenol–formaldehyde polymer micro-beads dispersed in polyethylene matrix, Carbon 38, 1141–1144 (2000)

    Article  CAS  Google Scholar 

  77. D. Hulicova, F. Sato, K. Okabe, M. Koishi, A. Oya: An attempt to prepare carbon nanotubes by the spinning of microcapsules, Carbon 39, 1438–1442 (2001)

    Article  CAS  Google Scholar 

  78. Z.-M. Huang, Y.-Z. Zhang, M. Kotaki, S. Ramakrishn: A review on polymer nanofibers by electrospinning and their applications in nanocomposites, Compos. Sci. Technol. 63, 2223–2253 (2003)

    Article  CAS  Google Scholar 

  79. Y. Wang, S. Serrano, J.J. Santiago-Aviles: Conductivity measurement of electrospun PAN-based carbon nanofiber, J. Mater. Sci. Lett. 21, 1055–1057 (2002)

    Article  CAS  Google Scholar 

  80. Y. Wang, J.J. Santiago-Aviles, R. Furlan, I. Ramos: Pyrolysis temperature and time dependence of electrical conductivity evolution for electrostatically generated carbon nanofibers, IEEE Trans. Nanotechnol. 2, 39–43 (2003)

    Article  CAS  Google Scholar 

  81. Y. Wang, S. Serrano, J.J. Santiago-Aviles: Raman characterization of carbon nanofibers prepared using electrospinning, Synth. Met. 138, 423–427 (2003)

    Article  CAS  Google Scholar 

  82. S.Y. Gu, J. Ren, Q.L. Wu: Preparation and structures of electrospun PAN nanofibers as a precursor of carbon nanofibers, Synth. Met. 155, 157–161 (2005)

    Article  CAS  Google Scholar 

  83. S.Y. Gu, J. Ren, G.J. Vancso: Process optimization and empirical modeling for electrospun polyacrylonitrile (PAN) nanofiber precursor of carbon nanofibers, Eur. Polym. J. 41, 2559–2568 (2005)

    Article  CAS  Google Scholar 

  84. D. Lai, Y. Xia: Electrospinning of nanofibers: reinventing the wheel, Adv. Mater. 16, 1151–1170 (2004)

    Article  CAS  Google Scholar 

  85. D. Hulicova, K. Hosoi, S. Kuroda, H. Abe, A. Oya: Carbon nanotubes prepared by spinning and carbonizing fine core-shell polymer microspheres, Adv. Mater. 14, 452–455 (2002)

    Article  CAS  Google Scholar 

  86. E. Zussman, A.L. Yarin, A.V. Brazilevsky, R. Avrahami, M. Feldman: Electrospun PAN/PMMA-derived carbon nanotubes, Adv. Mater. 18, 348–353 (2006)

    Article  CAS  Google Scholar 

  87. J. Brandrup, E.H. Immergut, E.A. Grulke, D. Bloch: Polymer Handbook (Wiley, New York 2005)

    Google Scholar 

  88. M. Winter, J.O. Besenhard, M.E. Spahar, P. Novak: Electrode materials for rechargeable lithium batteries, Adv. Mater. 10, 725–763 (1998)

    Article  CAS  Google Scholar 

  89. T.D. Burchell: Carbon Materials for Advanced Technologies (Elsevier, Amsterdam 1999)

    Google Scholar 

  90. M. Endo, C. Kim, K. Nishimura, T. Fujino, K. Miyashita: Recent development of carbon materials for Li ion batteries, Carbon 38, 183–197 (2000)

    Article  CAS  Google Scholar 

  91. E. Frackowiak, F. Beguin: Electrochemical storage of energy in carbon nanotubes and nanostructured carbons, Carbon 40, 1775–1787 (2002)

    Article  CAS  Google Scholar 

  92. E. Yasuda, M. Inagaki, K. Kaneko, M. Endo, A. Oya, Y. Tanabe: Carbon Alloy (Elsevier, Amsterdam 2003)

    Google Scholar 

  93. V.A. Nalimova, D.E. Sklovsky, G.N. Bondarenko, H. Alvergnat-Gaucher, S. Bonnamy, F. Beguin: Lithium interaction with carbon nanotubes, Synth. Met. 88, 89–93 (1997)

    Article  CAS  Google Scholar 

  94. B. Gao, A. Kleinhammes, X.P. Tang, C. Bower, L. Fleming, Y. Wu, O. Zhou: Electrochemical intercalation of single-walled carbon nanotubes with lithium, Chem. Phys. Lett. 307, 153–157 (1999)

    Article  CAS  Google Scholar 

  95. F. Leroux, K. Metenier, S. Gautier, E. Frackowiak, S. Bonnamy, F. Beguin: Electrochemical insertion of lithium in catalytic multi-walled carbon nanotubes, J. Power Source 81-82, 317–322 (1999)

    Article  CAS  Google Scholar 

  96. A.S. Claye, J.E. Fischer, C.B. Huffman, A.G. Rinzler, R.E. Smalley: Solid-state electrochemistry of the Li single wall carbon nanotube system, J. Electrochem. Soc. 147, 2845–2852 (2000)

    Article  CAS  Google Scholar 

  97. R.S. Morris, B.G. Dixon, T. Gennett, R. Raffaelle, M.J. Heben: High-energy, rechargeable Li-ion battery based on carbon nanotube technology, J. Power Source 138, 277–280 (2004)

    Article  CAS  Google Scholar 

  98. G.L. Che, B.B. Lakshmi, E.R. Fisher, C.R. Martin: Carbon nanotubule membranes for electrochemical energy storage and production, Nature 393, 346–349 (1998)

    Article  CAS  Google Scholar 

  99. M. Endo, Y.A. Kim, T. Hayashi, K. Nishimura, T. Matushita, K. Miyashita, M.S. Dresselhaus: Vapor-grown carbon fibers (VGCFs): Basic properties and their battery applications, Carbon 39, 1287–1297 (2001)

    Article  CAS  Google Scholar 

  100. C. Sotowa, G. Origi, M. Takeuchi, Y. Nishimura, K. Takeuchi, I.Y. Jang, Y.J. Kim, T. Hayashi, Y.A. Kim, M. Endo, M.S. Dresselhaus: The reinforcing effect of combined carbon nanotubes and acetylene blacks on the cathode electrode of lithium ion batteries, ChemSusChem 1, 911–915 (2008)

    Article  CAS  Google Scholar 

  101. F. Fong, K. Sacken, J.R. Dahn: Studies of lithium intercalation into carbons using nonaqueous electrochemical cells, J. Electrochem. Soc. 137, 2009–2013 (1990)

    Article  CAS  Google Scholar 

  102. S.H. Yoon, C.W. Park, H.J. Yang, Y. Korai, I. Mochida, R.T.K. Baker, N.M. Rodriguez: Novel carbon nanofibers of high graphitization as anodic materials for lithium ion secondary batteries, Carbon 42, 21–32 (2004)

    Article  CAS  Google Scholar 

  103. T. Doi, A. Fukuda, Y. Iriyama, T. Abe, Z. Ogumi, K. Nakagawa, T. Ando: Low-temperature synthesis of graphitized nanofibers for reversible lithium-ion insertion/extraction, Electrochem. Commun. 7, 10–13 (2005)

    Article  CAS  Google Scholar 

  104. J.K. Lee, K.W. An, J.B. Ju, B.W. Cho, W.I. Cho, D. Park, K.S. Yun: Electrochemical properties of PAN-based carbon fibers as anodes for rechargeable lithium ion batteries, Carbon 39, 1299–1305 (2001)

    Article  CAS  Google Scholar 

  105. B.E. Conway: Electrochemical Supercapacitors-Scientific Fundamentals and Technological Applications (Kluwer, New York 1999)

    Book  Google Scholar 

  106. A.G. Pandolfo, A.F. Hollenkamp: Carbon properties and their role in supercapacitors, J. Power Source 157, 11–27 (2006)

    Article  CAS  Google Scholar 

  107. A. Yoshida, I. Tanahashi, A. Nishino: Effect of concentration of surface acidic functional groups on electric double-layer properties of activated carbon fibers, Carbon 28, 611–615 (1990)

    Article  CAS  Google Scholar 

  108. A. Nishino: Capacitors: operating principles, current market and technical trends, J. Power Source 60, 137–147 (1990)

    Article  Google Scholar 

  109. J.P. Zheng: Ruthenium oxide-carbon composite electrodes for electrochemical capacitors, Electrochem. Solid-State Lett. 2, 359–361 (1999)

    Article  CAS  Google Scholar 

  110. E. Frackowiak, F. Béguin: Carbon materials for the electrochemical storage of energy in capacitors, Carbon 39, 937–950 (2001)

    Article  CAS  Google Scholar 

  111. M. Endo, T. Maeda, T. Takeda, Y.J. Kim, K. Koshiba, H. Hara, M.S. Dresselhaus: Capacitance and pore-size distribution in aqueous and nonaqueous electrolytes using various activated carbon electrodes, J. Electrochem. Soc. 148, A910–A914 (2001)

    Article  CAS  Google Scholar 

  112. C. Niu, E.K. Sichel, R. Hoch, D. Moy, H. Tennent: High power electrochemical capacitors based on carbon nanotube electrodes, Appl. Phys. Lett. 70, 1480–1482 (1997)

    Article  CAS  Google Scholar 

  113. C.Y. Liu, A.J. Bard, F. Wudl, I. Weitz, J.R. Heath: Electrochemical characterization of films of single-walled carbon nanotubes and their possible application in supercapacitors, Electrochem. Solid State Lett. 2, 577–578 (1999)

    Article  CAS  Google Scholar 

  114. E. Frackowiak, K. Metenier, V. Bertagna, F. Béguin: Supercapacitor electrodes from multiwalled carbon nanotubes, Appl. Phys. Lett. 77, 2421–2423 (2000)

    Article  CAS  Google Scholar 

  115. K.H. An, W.S. Kim, Y.S. Park, Y.C. Choi, S.M. Lee, D.C. Chung, D.J. Bae, S.C. Lim, Y.H. Lee: Supercapacitors using single-walled carbon nanotube electrodes, Adv. Mater. 13, 497–500 (2001)

    Article  CAS  Google Scholar 

  116. E. Frackowiak, F. Béguin: Electrochemical storage of energy in carbon nanotubes and nanostructured carbons, Carbon 40, 1775–1787 (2002)

    Article  CAS  Google Scholar 

  117. Z. Yie, C.L. Mangun, J. Economy: Preparation of fibrous porous materials by chemical activation: 1. ZnCl2 activation of polymer-coated fibers, Carbon 40, 1181–1191 (2002)

    Article  Google Scholar 

  118. N. Yalcin, V. Sevinc: Studies of the surface area and porosity of activated carbons prepared from rice husks, Carbon 38, 1943–1945 (2000)

    Article  CAS  Google Scholar 

  119. A. Huidobro, A.C. Pastor, F. Rodriguez-Reinoso: Preparation of activated carbon cloth from viscous rayon: Part IV. Chemical activation, Carbon 39, 389–398 (2001)

    Article  CAS  Google Scholar 

  120. J.M. Planeix, N. Coustel, B. Coq, V. Brotons, P.S. Kumbhar, R. Dutartre: Application of carbon nanotubes as supports in heterogeneous catalysis, J. Am. Chem. Soc. 116, 7935–7936 (1994)

    Article  CAS  Google Scholar 

  121. W. Li, C. Liang, J. Qiu, W. Zhou, H. Han, Z. Wei, G. Sun, Q. Xin: Carbon nanotubes as support for cathode catalyst of a direct methanol fuel cell, Carbon 40, 791–794 (2002)

    Article  CAS  Google Scholar 

  122. H.C. Choi, M. Shim, S. Bangsaruntip, H. Dai: Spontaneous reduction of metal ions on the sidewalls of carbon nanotubes, J. Am. Chem. Soc. 124, 9058–9059 (2002)

    Article  CAS  Google Scholar 

  123. L.R. Radovic, F. Rodriguez-Reinoso: Carbon materials in catalysis, Chem. Phys. Carbon 25, 243–358 (1997)

    CAS  Google Scholar 

  124. M.C. Roman-Martinez, D. Cazoria-Amoros, A. Linares-Solano, C. Salinas-Martinez De Lecea, H. Yamashita, M. Anpo: Metal-support interaction in Pt/C catalysts. Influence of the support surface chemistry and the metal precursor, Carbon 33, 3–13 (1995)

    Article  CAS  Google Scholar 

  125. M. Endo, Y.A. Kim, M. Ezaka, K. Osada, T. Yanagisawa, T. Hayashi, M. Terrones, M.S. Dresselhaus: Selective and efficient impregnation of metal nanoparticles on cup-stacked-type nanofibers, Nano Lett. 3, 723–726 (2003)

    Article  CAS  Google Scholar 

  126. C. Kim, Y.A. Kim, J.H. Kim, M. Kataoka, M. Endo: Self-assembled palladium nanoparticles on carbon nanofibers, Nanotechnology 19, 145602 (2008)

    Article  CAS  Google Scholar 

  127. K.A. Faraj, T.H. van Kuppevelt, W.F. Daamen: Construction of collagen scaffolds that mimic the three-dimensional architecture of specific tissues, Tissue Eng. 13, 2387–2394 (2007)

    Article  CAS  Google Scholar 

  128. M.T. Valarmathi, M.J. Yost, R.L. Goodwin, J.D. Potts: The influence of proepicardial cells on the osteogenic potential of marrow stromal cells in a three-dimensional tubular scaffold, Biomaterials 29, 2203–2216 (2008)

    Article  CAS  Google Scholar 

  129. J. Glowacki, S. Mizuno: Collagen scaffolds for tissue engineering, Biopolymers 89, 338–344 (2008)

    Article  CAS  Google Scholar 

  130. A. Atala, S.B. Bauer, S. Soker, J.J. Yoo, A.B. Retik: Tissue-engineered autologous bladders for patients needing cystoplasty, Lancet 367, 1241–1246 (2006)

    Article  Google Scholar 

  131. J.C. Chachques, J.C. Trainini, N. Lago, O.H. Masoli, J.L. Barisani, M. Cortes-Morichetti, O. Schussler, A. Carpentier: Myocardial assistance by grafting a new bioartificial upgraded myocardium (MAGNUM clinical trial): one year follow-up, Cell Transplant. 16, 927–934 (2007)

    Article  Google Scholar 

  132. F. DeLustro, J. Dasch, J. Keefe, L. Ellingsworth: Immune responses to allogeneic and xenogeneic implants of collagen and collagen derivatives, Clin. Orthop. Relat. Res. 260, 263–279 (1990)

    Google Scholar 

  133. D. Butler: Last chance to stop and think on risks of xenotransplants, Nature 391, 320–324 (1998)

    Article  CAS  Google Scholar 

  134. F.H. Bach, J.A. Fishman, N. Daniels, J. Proimos, B. Anderson, C.B. Carpenter, L. Forrow, S.C. Robson, H.V. Fineberg: Uncertainty in xenotransplantation: individual benefit versus collective risk, Nat. Med. 4, 141–144 (1998)

    Article  CAS  Google Scholar 

  135. J.R. Parsons, A.B. Weiss, R.S. Schenk, H. Alexander, F. Pavlisko: Long-term follow-up of achilles tendon repair with an absorbable polymer carbon fiber composite, Foot Ankle. 9, 179–184 (1989)

    Article  CAS  Google Scholar 

  136. T. Visuri, O. Kiviluoto, M. Eskelin: Carbon fiber for repair of the rotator cuff. A 4-year follow-up of 14 cases, Acta Orthop. Scand. 62, 356–359 (1991)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yoong A. Kim , Takuya Hayashi , Morinobu Endo or Mildred S. Dresselhaus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag

About this chapter

Cite this chapter

Kim, Y.A., Hayashi, T., Endo, M., Dresselhaus, M.S. (2013). Carbon Nanofibers. In: Vajtai, R. (eds) Springer Handbook of Nanomaterials. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20595-8_7

Download citation

Publish with us

Policies and ethics