Skip to main content

Digitized Chaos for Pseudo-random Number Generation in Cryptography

  • Chapter
Chaos-Based Cryptography

Part of the book series: Studies in Computational Intelligence ((SCI,volume 354))

Introduction

Random numbers play a key-role in cryptography, since they are used, e.g., to define enciphering keys or passwords [1]. Nowadays, the generation of random numbers is obtained referring to two types of devices, that are often properly combined together: True Random Number Generators (TRNGs), and Pseudo Random Number Generators (PRNGs). The former are devices that exploit truly stochastic physical phenomena [2, 3, 4, 5, 6], such as the electronic noise or the chaotic dynamics of certain nonlinear systems: for these devices the output sequences have an intrinsic degree of unpredictability, that is measured referring to the theoretical tools provided by Information Theory (e.g., in terms of the Shannon entropy) [7,4]. On the other hand, PRNGs are deterministic periodic finite state machines whose aim is to emulate, within the period, the random behavior of a truly random source of numbers. From a theoretical point of view, due to their deterministic nature, PRNGs are potentially predictable by observing their generated sequences [8, 9, 10, 1]. Nevertheless, in literature some families of PRNGs are classified to be ‘secure’, meaning that their algorithmic structure involves calculations that in average, referring to the prediction task, require an amount of computation time that is asymptotically unfeasible with the size of the problem, when referring to both the computational equipment at disposal and the known computing fastest algorithms [1,11]. It is worth noting that a given generator, even if belonging to an asymptotically secure family of PRNGs, can generate short periodic (and unsecure) sequences for several values of the initial seed. Therefore, apart from the cryptographic robustness of their algorithmic structure, a cryptographic PRNG must generate sequences that are acceptable from a statistical point of view, i.e., that pass a certain number of standard statistical tests [1, 12].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Menezes, A., Van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1997)

    MATH  Google Scholar 

  2. Petrie, C., Connelly, A.: A noise-based IC random number generator for applications in cryptography. IEEE Transaction on Circuits and Systems I 47(5), 615–621 (2000)

    Article  Google Scholar 

  3. Addabbo, T., Alioto, M., Fort, A., Rocchi, S., Vignoli, V.: A variability-tolerant feedback technique for throughput maximization of TRBGs with predefined entropy. Journal of Circuits, Systems and Computers 19(4), 1–17 (2010)

    Google Scholar 

  4. Addabbo, T., Alioto, M., Fort, A., Rocchi, S., Vignoli, V.: A feedback strategy to improve the entropy of a chaos-based random bit generator. IEEE Transaction on Circuits and Systems – part I 53(2), 326–337 (2006)

    Google Scholar 

  5. Callegari, S., Rovatti, R., Setti, G.: Embeddable ADC-based true random number generator for cryptographic applications exploiting nonlinear signal processing and chaos. IEEE Trans. on Signal Processing 53(2), 793–805 (2005)

    Article  MathSciNet  Google Scholar 

  6. Bucci, M., Germani, L., Luzzi, R., Tommasino, P., Trifiletti, A., Varanonuovo, M.: A high-speed IC random-number source for smartcard microcontrollers. IEEE Transaction Circuits and Systems I 50(11), 1373–1380 (2003)

    Article  Google Scholar 

  7. Walters, P.: An Introduction to Ergodic Theory. Springer, Heidelberg (1982)

    MATH  Google Scholar 

  8. Boyar, J.: Inferring sequences produced by pseudo-random number generators. Journal of the ACM 36(1), 129–141 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  9. Plumstead, J.B.: Inferring a sequence produced by a linear congruence. In: CRYPTO, pp. 317–319 (1982)

    Google Scholar 

  10. Knuth, D.: The art of computer programming, 2nd edn., vol. 2. Addison-Wesley, Reading (1981)

    MATH  Google Scholar 

  11. Blum, L., Blum, M., Shub, M.: A simple unpredictable pseudo-random number generator. SIAM Journal on Computing 15(2), 364–383 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  12. NIST Special Publication 800-22 Rev.1a: A statistical test suite for random and pseudorandom number generators for cryptographic applications (April 2010)

    Google Scholar 

  13. Coomes, B., Kocak, H., Palmer, K.: Shadowing in Discrete Dynamical Systems. In: Six Lectures on Dynamical Systems, pp. 163–211. World Scientific, Singapore (1996)

    Google Scholar 

  14. Eichenauer-Herrmann, J.: Pseudorandom number generation by nonlinear methods. International Statistical Reviews 63, 247–255 (1995)

    Article  MATH  Google Scholar 

  15. Tezuka, S.: Uniform Random Numbers: Theory and Practice. Kluwer Academic Publishers, Dordrecht (1995)

    MATH  Google Scholar 

  16. Eichenauer-Herrmann, J.: Inversive congruential pseudorandom numbers avoid the planes. Mathematics of Computation 56, 297–301 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. Golomb, S.W.: Shift Register Sequences. Aegean Park, Laguna Hills (1982)

    Google Scholar 

  18. Eichenauer, J., Topuzǒglu, A.: On the period length of congruential pseudorandom number sequences generated by inversions. Journal of Computational and Applied Mathematics 31, 87–96 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Beyer, W.A., Roof, R.B., Williamson, D.: The lattice structure of multiplicative congruential pseudo-random vectors. Mathematics of Computation 25(114), 345–363 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  20. Boyarsky, A., Góra, P.: Laws of Chaos. Birkhäuser, Basel (1997)

    Book  MATH  Google Scholar 

  21. Addabbo, T., Fort, A., Rocchi, S., Papini, D., Vignoli, V.: Invariant measures of tunable chaotic sources: Robustness analysis and efficient computation. IEEE Transactions on Circuits and Systems - I 56(4), 806–819 (2009)

    Article  MathSciNet  Google Scholar 

  22. Addabbo, T., Fort, A., Papini, D., Rocchi, S., Vignoli, V.: An efficient and accurate method for the estimation of entropy and other dynamical invariants for piecewise affine choatic maps. International Journal of Bifurcation and Chaos 19(12), 4175–4195 (2009) (accepted)

    Google Scholar 

  23. Setti, G., Mazzini, G., Rovatti, R., Callegari, S.: Statistical modeling of discrete-time chaotic processes: basic finite-dimensional tools and applications. Proc. of the IEEE 90(5), 662–690 (2002)

    Article  Google Scholar 

  24. Stojanovski, T., Kocarev, L.: Chaos-based random number generator – part I: Analysis. IEEE Transactions on Circuits and Systems I 48(3), 281–288 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lasota, A., Mackey, M.C.: Chaos, Fractals and Noise - Stochastic Aspects of Dynamics, 2nd edn. Springer, Heidelberg (1994)

    MATH  Google Scholar 

  26. Amigó, J., Kocarev, L., Tomovski, I.: Discrete entropy. Physica D 228, 77–85 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kocarev, L., Szczepanski, A.J.: Discrete chaos–I: Theory. IEEE Transaction on Circuits and Systems – I 53(6), 1300–1309 (2006)

    Article  MathSciNet  Google Scholar 

  28. Addabbo, T., Alioto, M., Fort, A., Pasini, A., Rocchi, S., Vignoli, V.: A class of maximum-period nonlinear congruential generators derived from the Rényi chaotic map. IEEE Transactions on Circuits and Systems - I 54(4), 816–828 (2007)

    Article  MathSciNet  Google Scholar 

  29. Addabbo, T., Fort, A., Kocarev, L., Rocchi, S., Vignoli, V.: Pseudo-chaotic lossy compressors for true random number generation. IEEE Transaction on Circuits and Systems I (2010) (accepted) doi: 10.1109/TCSI.2011.2108050

    Google Scholar 

  30. Addabbo, T., De Caro, D., Fort, A., Petra, N., Rocchi, S., Vignoli, V.: Efficient implementation of pseudochaotic piecewise linear maps with high digitization accuracies. International Journal of Circuit Theory and Applications 39(4) (April 2010)

    Google Scholar 

  31. Devaney, R.: An Introduction to Chaotic Dynamical System, 2nd edn. Addison-Wesley, Reading (1989)

    Google Scholar 

  32. Pareschi, F., Setti, G., Rovatti, R.: Noise robustness condition for chaotic maps with piecewise constant invariant density. In: Malek, M., Reitenspiess, M., Kaiser, J. (eds.) ISAS 2004. LNCS, vol. 3335, pp. 681–684. Springer, Heidelberg (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Addabbo, T., Fort, A., Rocchi, S., Vignoli, V. (2011). Digitized Chaos for Pseudo-random Number Generation in Cryptography. In: Kocarev, L., Lian, S. (eds) Chaos-Based Cryptography. Studies in Computational Intelligence, vol 354. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20542-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20542-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20541-5

  • Online ISBN: 978-3-642-20542-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics