Skip to main content

Silicon Lasers and Photonic Integrated Circuits

  • Chapter
  • First Online:
Fibre Optic Communication

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 161))

Abstract

The chapter discusses photonic integration on silicon from the material property and device points of view and reviews the numerous efforts including bandgap engineering, Raman scattering, monolithic heteroepitaxy and hybrid integration to realize efficient light emission, amplification and lasing on silicon. The state of the art technologies for high-speed modulation are also discussed in order to unfold a picture of future transmitters on silicon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.D. Plummer, M.D. Deal, P.B. Griffin, Silicon VLSI Technology: Fundamentals, Practice, and Modeling (Prentice Hall, New York, USA, 2000)

    Google Scholar 

  2. G.E. Moore, Cramming more components onto integrated circuits. Electronics 19, 114–117 (1965)

    Google Scholar 

  3. http://en.wikipedia.org/wiki/UNIVAC_I

  4. http://www.kurzweilai.net/articles/art0134.html?printable=1

  5. M.K. Smit, Past and future of InP-based photonic integration, LEOS Annual Meeting, Newport Beach, CA, USA (2008), paper MF1

    Google Scholar 

  6. L. Thylen, A Moore's law for photonics, Intern. Symp. Biophoton., Nanophoton. Metamater., Hangzhou, China (2006), pp. 256–263

    Google Scholar 

  7. S.C. Nicholes, M.L. Maanovi, B. Jevremovi, E. Lively, L.A. Coldren, D.J. Blumenthal, The world's first InP 8 ⨉ 8 monolithic tunable optical router (Motor) operating at 40 Gbps line rate per port, Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC'09), Techn. Digest (San Diego, CA, USA, 2009), post-deadline paper PDPB1

    Google Scholar 

  8. M.K. Smit, Lecture at the University of California, Santa Barbara, CA, USA (2008)

    Google Scholar 

  9. http://www.itrs.net/

  10. http://www.eetimes.com/showArticle.jhtml?articleID=214502894

  11. J.W. Raring, L.A. Coldren, 40-Gbit/s widely tunable transceivers. IEEE J. Sel. Top. Quantum Electron. 13, 3–14 (2007)

    Article  Google Scholar 

  12. L.A. Coldren, InP-based photonic integrated Circuits, CLEO/QELS, San Jose, CA, USA (2008), paper CTuBB1

    Google Scholar 

  13. D. Liang, A.W. Fang, H.-W. Chen, M. Sysak, B.R. Koch, E. Lively, Y.-H. Kuo, R. Jones, J.E. Bowers, Hybrid silicon evanescent approach to optical interconnects. Appl. Phys. A 95, 1045–1057 (2009)

    Article  ADS  Google Scholar 

  14. L. Pavesi, Optical gain and lasing in low dimensional silicon: the quest for an injection laser, in Device Applications of Silicon Nanocrystals and Nanostructures, ed. by N. Koshida (Springer, New York, 2009), Chap. 4

    Google Scholar 

  15. P. Jonsson, H. Bleichner, M. Isberg, E. Nordlander, The ambipolar Auger coefficient: measured temperature dependence in electron irradiated and highly injected n-type silicon. J. Appl. Phys. 81, 2256–2262 (1997)

    Article  ADS  Google Scholar 

  16. R. Soref, J.P. Lorenzo, All-silicon active and passive guided-wave components for λ = 1.3 and 1.6 µm. IEEE J. Quantum Electron. QE-22, 873–879 (1986)

    Article  ADS  Google Scholar 

  17. L. Dal Negro, M. Cazzanelli, N. Daldosso, Z. Gaburro, L. Pavesi, F. Priolo, D. Pacifici, G. Franzo, F. Iacona, Stimulated emission in plasma-enhanced chemical vapour deposited silicon nanocrystals. Phys. E 16, 297–308 (2003)

    Article  Google Scholar 

  18. U. Gösele, V. Lehmann, Light-emitting porous silicon. Mater. Chem. Phys. 40, 253–259 (1995)

    Article  Google Scholar 

  19. L.T. Canham, Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 57, 1046–1048 (1990)

    Article  ADS  Google Scholar 

  20. A.G. Cullis, L.T. Canham, Visible light emission due to quantum size effects in highly porous crystalline silicon. Nature 353, 335–338 (1991)

    Article  ADS  Google Scholar 

  21. K.D. Hirschman, L. Tsybeskov, S.P. Duttagupta, P.M. Fauchet, Silicon-based visible light-emitting devices integrated into microelectronic circuits. Nature 384, 338–341 (1996)

    Article  ADS  Google Scholar 

  22. W.L. Wilson, P.F. Szajowski, L.E. Brus, Quantum confinement in size-selected, surface-oxidized silicon nanocrystals. Science 262, 1242–1244 (1993)

    Article  ADS  Google Scholar 

  23. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, F. Priolo, Optical gain in silicon nanocrystals. Nature 408, 440–444 (2000)

    Article  ADS  Google Scholar 

  24. Z.H. Lu, D.J. Lockwood, J.M. Baribeau, Quantum confinement and light emission in SiO2/Si superlattices. Nature 378, 258–260 (1995)

    Article  ADS  Google Scholar 

  25. A.G. Nassiopoulos, S. Grigoropoulos, D. Papadimitriou, Electroluminescent device based on silicon nanopillars. Appl. Phys. Lett. 69, 2267–2269 (1996)

    Article  ADS  Google Scholar 

  26. A. Malinin, V. Ovchinnikov, S. Novikov, C. Tuovinen, A. Hovinen, Fabrication of a silicon based electroluminescent device. Mater. Sci. Eng. B 74, 32–35 (2000)

    Article  Google Scholar 

  27. O. Bisi, S. Ossicini, L. Pavesi, Porous silicon: a quantum sponge structure for silicon based optoelectronics. Surf. Sci. Rep. 38, 1–126 (2000)

    Article  Google Scholar 

  28. M.V. Wolkin, J. Jorne, P.M. Fauchet, G. Allan, C. Delerue, Electronic states and luminescence in porous silicon quantum dots: the role of oxygen. Phys. Rev. Lett. 82, 197–200 (1999)

    Article  ADS  Google Scholar 

  29. A. Zimina, S. Eisebitt, W. Eberhardt, J. Heitmann, M. Zacharias, Electronic structure and chemical environment of silicon nanoclusters embedded in a silicon dioxide matrix, Appl. Phys. Lett. 88, 163103 (2006)

    Article  ADS  Google Scholar 

  30. J. Heitmann, F. Müller, L. Yi, M. Zacharias, D. Kovalev, F. Eichhorn, Excitons in Si nanocrystals: confinement and migration effects. Phys. Rev. B 69, 195309 (2004)

    Article  ADS  Google Scholar 

  31. K. Leonid, R. Markku, N. Sergei, K. Olli, S. Juha, Raman scattering from very thin Si layers of Si/SiO2 superlattices: experimental evidence of structural modification in the 0.8–3.5 nm thickness region. J. Appl. Phys. 86, 5601–5608 (1999)

    Article  Google Scholar 

  32. L. Dal Negro, M. Cazzanelli, L. Pavesi, S. Ossicini, D. Pacifici, G. Franzo, F. Priolo, F. Iacona, Dynamics of stimulated emission in silicon nanocrystals. Appl. Phys. Lett. 82, 4636–4638 (2003)

    Article  ADS  Google Scholar 

  33. L. Dal Negro, M. Cazzanelli, B. Danese, L. Pavesi, F. Iacona, G. Franzo, F. Priolo, Light amplification in silicon nanocrystals by pump and probe transmission measurements. J. Appl. Phys. 96, 5747–5755 (2004)

    Article  ADS  Google Scholar 

  34. C. Lingk, G. von Plessen, J. Feldmann, K. Stock, M. Arzberger, G. Böhm, M.-C. Amann, G. Abstreiter, Dynamics of amplified spontaneous emission in InAs/GaAs quantum dots. Appl. Phys. Lett. 76, 3507–3509 (2000)

    Article  ADS  Google Scholar 

  35. S. Fujita, N. Sugiyama, Visible light-emitting devices with Schottky contacts on an ultrathin amorphous silicon layer containing silicon nanocrystals. Appl. Phys. Lett. 74, 308–310 (1999)

    Article  ADS  Google Scholar 

  36. R.J. Walters, G.I. Bourianoff, H.A. Atwater, Field-effect electroluminescence in silicon nanocrystals. Nat. Mater. 4, 143–146 (2005)

    Article  ADS  Google Scholar 

  37. R.J. Walters, J. Carreras, F. Tao, L.D. Bell, H.A. Atwater, Silicon nanocrystal field-effect light-emitting devices. IEEE J. Sel. Top. Quantum Electron. 12, 1647–1656 (2006)

    Article  Google Scholar 

  38. C. Josep, J. Arbiol, B. Garrido, C. Bonafos, J. Montserrat, Direct modulation of electroluminescence from silicon nanocrystals beyond radiative recombination rates. Appl. Phys. Lett. 92, 091103 (2008)

    Article  ADS  Google Scholar 

  39. F. Minoru, Y. Masato, K. Yoshihiko, H. Shinji, Y. Keiichi, 1.54 µm photoluminescence of Er3+ doped into SiO2 films containing Si nanocrystals: evidence for energy transfer from Si nanocrystals to Er3+. Appl. Phys. Lett. 71, 1198–1200 (1997)

    Article  Google Scholar 

  40. G. Franzò, F. Priolo, S. Coffa, A. Polman, A. Carnera, Room-temperature electroluminescence from Er-doped crystalline Si. Appl. Phys. Lett. 64, 2235–2237 (1994)

    Article  ADS  Google Scholar 

  41. G. Franzò, S. Coffa, F. Priolo, C. Spinella, Mechanism and performance of forward and reverse bias electroluminescence at 1.54 µm from Er-doped Si diodes. J. Appl. Phys. 81, 2784–2793 (1997)

    Article  ADS  Google Scholar 

  42. F. Iacona, A. Irrera, G. Franz, D. Pacifici, I. Crupi, M.P. Miritello, C.D. Presti, F. Priolo, Silicon-based light-emitting devices: properties and applications of crystalline, amorphous and Er-doped nanoclusters. IEEE J. Sel. Top. Quantum Electron. 12, 1596–1606 (2006)

    Article  Google Scholar 

  43. G. Franzò, V. Vinciguerra, F. Priolo, The excitation mechanism of rare-earth ions in silicon nanocrystals. Appl. Phys. A 69, 3–12 (1999)

    Article  ADS  Google Scholar 

  44. D. Pacifici, G. Franzò, F. Priolo, F. Iacona, L. Dal Negro, Modeling and perspectives of the Si nanocrystals-Er interaction for optical amplification. Phys. Rev. B 67, 245301 (2003)

    Article  ADS  Google Scholar 

  45. S.G. Cloutier, P.A. Kossyrev, J.M. Xu, Optical gain and stimulated emission in periodic nanopatterned crystalline silicon. Nat. Mater. 4, 887–891 (2005)

    Article  ADS  Google Scholar 

  46. E. Rotem, J.M. Shainline, J.M. Xu, Enhanced photoluminescence from nanopatterned carbon-rich silicon grown by solid-phase epitaxy. Appl. Phys. Lett. 91, 051127–051129 (2007)

    Article  ADS  Google Scholar 

  47. G. Davies, The optical properties of luminescence centres in silicon. Phys. Rep. 176, 83–188 (1989)

    Article  ADS  Google Scholar 

  48. G.D. Watkins, Defects in irradiated silicon: EPR and electron-nuclear double resonance of interstitial boron. Phys. Rev. B 12, 5824–5839 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  49. E. Rotem, J.M. Shainline, J.M. Xu, Electroluminescence of nanopatterned silicon with carbon implantation and solid phase epitaxial regrowth. Opt. Express 15, 14099–14106 (2007)

    Article  ADS  Google Scholar 

  50. R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, B. Jalali, Observation of stimulated Raman amplification in silicon waveguides. Opt. Express 11, 1731–1739 (2003)

    Article  ADS  Google Scholar 

  51. T.K. Liang, H.K. Tsang, Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides. Appl. Phys. Lett. 84, 2745–2747 (2004)

    Article  ADS  Google Scholar 

  52. O. Boyraz, B. Jalali, Demonstration of a silicon Raman laser. Opt. Express 12, 5269–5273 (2004)

    Article  ADS  Google Scholar 

  53. R. Jones, H. Rong, A. Liu, A.W. Fang, M.J. Paniccia, D. Hak, O. Cohen, Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering. Opt. Express 13, 519–525 (2005)

    Article  ADS  Google Scholar 

  54. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A.W. Fang, M.J. Paniccia, A continuous-wave Raman silicon laser. Nature 433, 725–728 (2005)

    Article  ADS  Google Scholar 

  55. S. Fathpour, K.K. Tsia, B. Jalali, Energy harvesting in silicon Raman amplifiers. Appl. Phys. Lett. 89, 061109 (2006)

    Article  ADS  Google Scholar 

  56. H. Rong, S. Xu, Y.-H. Kuo, V. Sih, O. Cohen, O. Raday, M.J. Paniccia, Low-threshold continuous-wave Raman silicon laser. Nat. Photon. 1, 232–237 (2007)

    Article  ADS  Google Scholar 

  57. C.P. Kuo, S.K. Vong, R.M. Cohen, G.B. Stringfellow, Effect of mismatch strain on bandgap in III–V semiconductors. J. Appl. Phys. 57, 5428–5432 (1985)

    Article  ADS  Google Scholar 

  58. H. Kawanami, Heteroepitaxial technologies of III–V on Si. Sol. Energy Mater. 66, 479–486 (2001)

    Article  Google Scholar 

  59. Y.H. Xie, K.L. Wang, Y.C. Kao, An investigation on surface conditions for Si molecular beam epitaxial (MBE) growth. J. Vac. Sci. Technol. A 3, 1035–1039 (1985)

    Article  ADS  Google Scholar 

  60. K. Samonji, H. Yonezu, Y. Takagi, K. Iwaki, N. Ohshima, J.K. Shin, K. Pak, Reduction of threading dislocation density in InP-on-Si heteroepitaxy with strained short-period superlattices. Appl. Phys. Lett. 69, 100–102 (1996)

    Article  ADS  Google Scholar 

  61. Y. Masafumi, S. Mitsuru, I. Yoshio, Misfit stress dependence of dislocation density reduction in GaAs films on Si substrates grown by strained-layer superlattices. Appl. Phys. Lett. 54, 2568–2570 (1989)

    Article  Google Scholar 

  62. K. Nozawa, Y. Horikoshi, Low threading dislocation density GaAs on Si(100) with InGaAs/GaAs strained-layer superlattice grown by migration-enhanced epitaxy. Jpn. J. Appl. Phys. 30, L668–L671 (1991)

    Article  ADS  Google Scholar 

  63. E. Yamaichi, T. Ueda, Q. Gao, C. Yamagishi, M. Akiyama, Method to obtain low-dislocation-density regions by patterning with SiO2 on GaAs/Si followed by annealing. Jpn. J. Appl. Phys. 33, L1442–L1444 (1994)

    Article  ADS  Google Scholar 

  64. B. Kunert, S. Zinnkann, K. Volz, W. Stolz, Monolithic integration of Ga(NAsP)/(BGa)P multi-quantum well structures on (001) silicon substrate by MOVPE. J. Cryst. Growth 310, 4776–4779 (2008)

    Article  ADS  Google Scholar 

  65. B. Kunert, K. Volz, J. Koch, W. Stolz, Direct-bandgap Ga(NAsP)-material system pseudomorphically grown on GaP substrate. Appl. Phys. Lett. 88, 182108 (2006)

    Article  ADS  Google Scholar 

  66. V.G. Talalaev, G.E. Cirlin, A.A. Tonkikh, N.D. Zakharov, P. Werner, Room temperature electroluminescence from Ge/Si quantum dots superlattice close to 1.6 µm. phys. stat. sol. (a) 198, R4–R6 (2003)

    Article  ADS  Google Scholar 

  67. X. Sun, J. Liu, L.C. Kimerling, J. Michel, Room-temperature direct bandgap electroluminesence from Ge-on-Si light-emitting diodes. Opt. Lett. 34, 1198–1200 (2009)

    Article  ADS  Google Scholar 

  68. S.-L. Cheng, J. Lu, G. Shambat, H.-Y. Yu, K. Saraswat, J. Vuckovic, Y. Nishi, Room temperature 1.6 µm electroluminescence from Ge light emitting diode on Si substrate. Opt. Express 17, 10019–10024 (2009)

    Article  ADS  Google Scholar 

  69. L. Tsybeskov, E.-K. Lee, H.-Y. Chang, D.J. Lockwood, J.-M. Baribeau, X. Wu, T.I. Kamins, Silicon–germanium nanostructures for on-chip optical interconnects, Appl. Phys. A. 95, 1015–1027 (2009)

    Article  ADS  Google Scholar 

  70. F. Olsson, M. Xie, S. Lourdudoss, I. Prieto, P.A. Postigo, Epitaxial lateral overgrowth of InP on Si from nano-openings: theoretical and experimental indication for defect filtering throughout the grown layer. J. Appl. Phys. 104, 093112 (2008)

    Article  ADS  Google Scholar 

  71. M. Deura, T. Hoshii, T. Yamamoto, Y. Ikuhara, M. Takenaka, S. Takagi, Y. Nakano, M. Sugiyama, Dislocation-free InGaAs on Si(111) using micro-channel selective-area metal-organic vapor phase epitaxy. Appl. Phys. Express 2, 011101–011103 (2009)

    Article  ADS  Google Scholar 

  72. L. Yan, L. Yan, F. Zhongchao, X. Bo, Y. Yude, Y. Jinzhong, Fabrication and optical optimization of spot-size converters with strong cladding layers. J. Opt. A 11, 085002 (2009)

    Article  Google Scholar 

  73. E.E.L. Friedrich, M.G. Oberg, B. Broberg, S. Nilsson, S. Valette, Hybrid integration of semiconductor lasers with Si-based single-mode ridge waveguides. J. Lightw. Technol. 10, 336–340 (1992)

    Article  ADS  Google Scholar 

  74. J. Sasaki, M. Itoh, T. Tamanuki, H. Hatakeyama, S. Kitamura, T. Shimoda, T. Kato, Multiple-chip precise self-aligned assembly for hybrid integrated optical modules using Au-Sn solder bumps. IEEE Trans. Adv. Packag. 24, 569–575 (2001)

    Article  Google Scholar 

  75. H. Park, A.W. Fang, S. Kodama, J.E. Bowers, Hybrid silicon evanescent laser fabricated with a silicon waveguide and III–V offset quantum wells. Opt. Express 13, 9460–9464 (2005)

    Article  ADS  Google Scholar 

  76. A. Black, A.R. Hawkins, N.M. Margalit, D.I. Babic, A.L. Holmes, Jr., Y.L. Chang, P. Abraham, J.E. Bowers, E.L. Hu, Wafer fusion: materials issues and device results. IEEE J. Sel. Top. Quantum Electron. 3, 943–951 (1997)

    Article  Google Scholar 

  77. D. Pasquariello, K. Hjort, Plasma-assisted InP-to-Si low temperature wafer bonding. IEEE J. Sel. Top. Quantum Electron. 8, 118–131 (2002)

    Article  Google Scholar 

  78. D. Pasquariello, M. Camacho, F. Ericsson, K. Hjort, Crystalline defects in InP-to-silicon direct wafer bonding. Jpn. J. Appl. Phys. 40, 4837–4844 (2001)

    Article  ADS  Google Scholar 

  79. G. Roelkens, D. Van Thourhout, R. Baets, R. Nötzel, M.K. Smit, Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a silicon-on-insulator waveguide circuit. Opt. Express 14, 8154–8159 (2006)

    Article  ADS  Google Scholar 

  80. A.W. Fang, H. Park, O. Cohen, R. Jones, M.J. Paniccia, J.E. Bowers, Electrically pumped hybrid AlGaInAs-silicon evanescent laser. Opt. Express 14, 9203–9210 (2006)

    Article  ADS  Google Scholar 

  81. I. Christiaens, G. Roelkens, K. De Mesel, D. Van Thourhout, R. Baets, Thin-film devices fabricated with benzocyclobutene adhesive wafer bonding. J. Lightw. Technol. 23, 517–523 (2005)

    Article  ADS  Google Scholar 

  82. D. Liang, J.E. Bowers, Highly efficient vertical outgassing channels for low-temperature InP-to-silicon direct wafer bonding on the silicon-on-insulator (SOI) substrate. J. Vac. Sci. Technol. B 26, 1560–1568 (2008)

    Article  Google Scholar 

  83. H. Park, A.W. Fang, O. Cohen, R. Jones, M.J. Paniccia, J.E. Bowers, Design and fabrication of optically pumped hybrid silicon-AlGaInAs evanescent lasers. IEEE J. Sel. Top. Quantum Electron. 12, 1657–1663 (2006)

    Article  Google Scholar 

  84. D. Liang, J.E. Bowers, D.C. Oakley, A. Napoleone, D.C. Chapman, C.-L. Chen, P.W. Juodawlkis, O. Raday, High-quality 150 mm InP-to-silicon epitaxial transfer for silicon photonic integrated circuits. Electrochem. Solid-State Lett. 12, H101–H104 (2009)

    Article  Google Scholar 

  85. H. Park, A.W. Fang, D. Liang, Y.-H. Kuo, H.-H. Chang, B.R. Koch, H.-W. Chen, M.N. Sysak, R. Jones, J.E. Bowers, Photonic integration on the hybrid silicon evanescent device platform. Adv. Opt. Technol. 2008, 682978 (2008)

    Google Scholar 

  86. H.-H. Chang, A.W. Fang, M.N. Sysak, H. Park, R. Jones, O. Cohen, O. Raday, M.J. Paniccia, J.E. Bowers, 1310 nm silicon evanescent laser. Opt. Express 15, 11466–11471 (2007)

    Article  ADS  Google Scholar 

  87. A.W. Fang, E. Lively, Y.-H. Kuo, D. Liang, J.E. Bowers, A distributed feedback silicon evanescent laser. Opt. Express 16, 4413–4419 (2008)

    Article  ADS  Google Scholar 

  88. H. Park, A.W. Fang, R. Jones, O. Cohen, O. Raday, M.N. Sysak, M.J. Paniccia, J.E. Bowers, A hybrid AlGaInAs-silicon evanescent waveguide photodetector. Opt. Express 15, 6044–6052 (2007)

    Article  ADS  Google Scholar 

  89. H. Park, M.N. Sysak, H.-W. Chen, A.W. Fang, D. Liang, L. Liao, B.R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, J.E. Bowers, Device and integration technology for silicon photonic transmitters. IEEE J. Sel. Top. Quantum Electron., online article (2011). doi: 10.1109/JSTQE.2011.2106112

    Google Scholar 

  90. A.W. Fang, B.R. Koch, R. Jones, E. Lively, L. Di, Y.-H. Kuo, J.E. Bowers, A distributed Bragg reflector silicon evanescent laser. IEEE Photon. Technol. Lett. 20, 1667–1669 (2008)

    Article  ADS  Google Scholar 

  91. A.W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M.J. Paniccia, J.E. Bowers, Integrated AlGaInAs-silicon evanescent race track laser and photodetector. Opt. Express 15, 2315–2322 (2007)

    Article  ADS  Google Scholar 

  92. D. Liang, M. Fiorentino, T. Okumura, H.-H. Chang, D.T. Spencer, Y.-H. Kuo, A.W. Fang, D. Dai, R.G. Beausoleil, J.E. Bowers, Electrically-pumped compact hybrid silicon microring lasers for optical interconnects. Opt. Express 17, 20355–20364 (2009)

    Article  ADS  Google Scholar 

  93. D. Liang, M. Fiorentino, S. Srinivasan, J.E. Bowers, R.G. Beausoleil, Low threshold electrically-pumped hybrid silicon microring lasers. IEEE J. Sel. Top. Quantum Electron., online article (2011). doi: 10.1109/JSTQE.2010.2103552

    Google Scholar 

  94. J. Van Campenhout, P. Rojo Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J.M. Fedeli, C. Lagahe, R. Baets, Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit. Opt. Express 15, 6744–6749 (2007)

    Article  ADS  Google Scholar 

  95. T. Spuesens, L. Liu, T. de Vries, P.R. Romeo, P. Regreny, D.J. Van Thourhout, Improved design of an InP-based microdisk laser heterogeneously integrated with SOI, Proc. 6th IEEE Internat. Conf. Group IV Photonics, Technical Digest (San Francisco, CA, USA, 2009), paper FA3

    Google Scholar 

  96. J. Van Campenhout, L. Liu, P.R. Romeo, D. Van Thourhout, C. Seassal, P. Regreny, L. Di Cioccio, J.M. Fedeli, R. Baets, A compact SOI-integrated multiwavelength laser source based on cascaded InP microdisks. IEEE Photon. Technol. Lett. 20, 1345–1347 (2008)

    Article  ADS  Google Scholar 

  97. G.T. Reed, A.P. Knights, Silicon Photonics: An Introduction (Wiley, Chichester, 2004)

    Book  Google Scholar 

  98. R. Soref, B. Bennett, Electrooptical effects in silicon. IEEE J. Quantum Electron. QE-23, 123–129 (1987)

    Article  ADS  Google Scholar 

  99. G.T. Reed, Silicon Photonics: The State of the Art (Wiley, Chichester, 2008)

    Book  Google Scholar 

  100. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M.J. Paniccia, A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor. Nature 427, 615–618 (2004)

    Article  ADS  Google Scholar 

  101. Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, Micrometre-scale silicon electro-optic modulator. Nature 435, 325–327 (2005)

    Article  ADS  Google Scholar 

  102. J. Basak, L. Liao, A. Liu, D. Rubin, Y. Chetrit, H. Nguyen, D. Samara-Rubio, R. Cohen, N. Izhaky, M.J. Paniccia, Developments in gigascale silicon optical modulators using free carrier dispersion mechanisms. Adv. Opt. Technol. 2008, Article ID 678948 (2008). doi: 10.1155/2008/678948

    Google Scholar 

  103. A. Liu, L. Liao, D. Rubin, B. Juthika, H. Nguyen, Y. Chetrit, R. Cohen, N. Izhaky, M.J. Paniccia, High-speed silicon modulator for future VLSI interconnect, OSA Topical Meeting, Integrated Photonics and Nanophotonics Research and Applications (IPNRA), Technical Digest (Salt Lake City, UT, USA, 2007), paper IMD3

    Google Scholar 

  104. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, M.J. Paniccia, High-speed optical modulation based on carrier depletion in a silicon waveguide. Opt. Express 15, 660–668 (2007)

    Article  ADS  Google Scholar 

  105. H.-W. Chen, Y. Kuo, J.E. Bowers, Hybrid silicon modulators. Chin. Opt. Lett. 7, 280–285 (2009)

    Article  Google Scholar 

  106. H.-W. Chen, Y.-H. Kuo, J.E. Bowers, A hybrid silicon-AlGaInAs phase modulator. IEEE Photon. Technol. Lett. 20, 1920–1922 (2008)

    Article  Google Scholar 

  107. H.-W. Chen, Y.-H. Kuo, J.E. Bowers, High speed Mach–Zehnder silicon evanescent modulator using capacitively loaded traveling wave electrode, Proc. 6th IEEE Internat. Conf. Group IV Photonics, Technical Digest (San Francisco, CA, USA, 2009), paper FC4

    Google Scholar 

  108. H.-W. Chen, J.D. Peters, J.E. Bowers, Forty Gbit/s hybrid silicon Mach–Zehnder modulator with low chirp. Opt. Express 19, 1455–1460 (2011)

    Article  ADS  Google Scholar 

  109. Y.-H. Kuo, H.-W. Chen, J.E. Bowers, High speed hybrid silicon evanescent electroabsorption modulator. Opt. Express 16, 9936–9941 (2008)

    Article  ADS  Google Scholar 

  110. Y. Tang, H.-W. Chen, S. Jain, J.D. Peters, U. Westergren, J.E. Bowers, 50 Gbit/s hybrid silicon traveling-wave electroabsorption modulator. Opt. Express 19, 5811–5816 (2011)

    Article  ADS  Google Scholar 

  111. J.E. Roth, O. Fidaner, R.K. Schaevitz, Y.-H. Kuo, T.I. Kamins, J.S. Harris, D.A.B. Miller, Optical modulator on silicon employing germanium quantum wells. Opt. Express 15, 5851–5859 (2007)

    Article  ADS  Google Scholar 

  112. R.S. Jacobsen, K.N. Andersen, P.I. Borel, J. Fage-Pedersen, L.H. Frandsen, O. Hansen, M. Kristensen, A.V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, A. Bjarklev, Strained silicon as a new electro-optic material. Nature 441, 199–202 (2006)

    Article  ADS  Google Scholar 

  113. Y. Kang, H.-D. Liu, M. Morse, M.J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W.S. Zaoui, J.E. Bowers, A. Beling, D.C. McIntosh, X. Zheng, J.C. Campbell, Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product. Nat. Photon. 3, 59–63 (2009)

    Article  ADS  Google Scholar 

  114. W.S. Zaoui, H.-W. Chen, J.E. Bowers, Y. Kang, M. Morse, M.J. Paniccia, A. Pauchard, J.C. Campbell, Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product. Opt. Express 17, 12641–12649 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Di Liang Ph.D. , Alexander W. Fang Ph.D. or John E. Bowers Prof. Dr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Liang, D., Fang, A., Bowers, J. (2012). Silicon Lasers and Photonic Integrated Circuits. In: Venghaus, H., Grote, N. (eds) Fibre Optic Communication. Springer Series in Optical Sciences, vol 161. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20517-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20517-0_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20516-3

  • Online ISBN: 978-3-642-20517-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics