Skip to main content

Abstract

Citrus is one of the most important fruit crops grown in the subtropical and tropical areas of the world and has great economic, health, religious, and cultural values. While there are conservation and management efforts, the lack of sufficient descriptions, specimens, and original habitats has made it difficult for the biogeographers to define precisely the centers of origin and ancestors of citrus. Understanding taxonomy, phylogenetic relationships, and genetic variability in citrus is critical for determining its origin, evolution, and efficient genetic improvement programs. Though citrus breeding is very challenging, different breeding programs throughout the world have made significant progress in the application of conventional and modern approaches for genetic improvement and cultivar development. The recent knowledge and establishment of an array of genomics and bioinformatics tools have provided efficient strategies to identify, tag, and clone many economically important genes. Progress toward these efforts in citrus has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Khayri JM, Al-Bahrany AM (2001) In vitro micropropagation of Citrus aurantifolia (lime). Curr Sci 81(9):1242–1246

    CAS  Google Scholar 

  • Almeida WAB, Mourao Filho FAA, Mendes BMJ, Pavan A, Rodriguez APM (2003a) Agrobacterium-mediated transformation of Citrus sinensis and Citrus limonia epicotyl segments. Sci Agricola 60:23–29

    Google Scholar 

  • Almeida WAB, Mourao Filho FAA, Pino LE, Boscariol RL, Rodriguez APM, Mendes BMJ (2003b) Genetic transformation and plant recovery from mature tissues of Citrus sinensis L. Osbeck. Plant Sci 164:203–211

    CAS  Google Scholar 

  • Ananthakrishnan G, Orbović V, Pasquali G, Ćalović M, Grosser JW (2007) Transfer of citrus tristeza virus (CTV)-derived resistance candidate sequences to four grapefruit cultivars through Agrobacterium-mediated genetic transformation. In Vitro Cell Dev Biol Plant 43:593–601

    CAS  Google Scholar 

  • Asins MJ (2002) Present and future of quantitative trait locus analysis in plant breeding. Plant Breed 121:281–291

    Google Scholar 

  • Bajaj YPS (1984) Induction of growth in frozen embryos of coconut and ovules of citrus. Curr Sci 53:1215–1216

    Google Scholar 

  • Ballester A, Cervera M, Pena L (2007) Efficient production of transgenic citrus plants using isopentenyl transferase positive selection and removal of the marker gene by site-specific recombination. Plant Cell Rep 26:39–45

    PubMed  CAS  Google Scholar 

  • Barkley NA, Roose ML, Krueger RR, Federici CT (2006) Assessing genetic diversity and population structure in a citrus germplasm collection utilizing simple sequence repeat markers (SSRs). Theor Appl Genet 112:1519–1531

    PubMed  CAS  Google Scholar 

  • Barlass M, Skene GM (1986) Citrus (Citrus species). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 1, Trees I. Springer, Berlin, pp 207–219

    Google Scholar 

  • Barrett HC, Rhodes AM (1976) A numerical taxonomic study of affinity relationships in cultivated Citrus and its close relatives. Syst Bot 1:105–136

    Google Scholar 

  • Batuman O, Mawassi M, Bar-Joseph M (2006) Transgenes consisting of a dsRNA of an RNAi suppressor plus the 3′UTR provide resistance to Citrus tristeza virus sequences in Nicotiana benthamiana but not in citrus. Virus Genes 33:319–327

    PubMed  CAS  Google Scholar 

  • Bausher MG, Shatters R, Chaparro J, Dang P, Hunter W, Niedz R (2003) An expressed sequence tag (EST) set from Citrus sinensis L. Osbeck whole seedlings and the implications of further perennial source investigations. Plant Sci 165(2):415–422

    CAS  Google Scholar 

  • Bond JE, Roose ML (1998) Agrobacterium-mediated transformation of the commercially important citrus cultivar Washington navel orange. Plant Cell Rep 18:229–234

    CAS  Google Scholar 

  • Boscariol RL, Almeida WAB, Derbyshire MTVC, Mourao Filho FAA, Mendes BMJ (2003) The use of PMI/mannose selection system to recover transgenic sweet orange plants (Citrus sinensis L. Osbeck). Plant Cell Rep 16:271–278

    Google Scholar 

  • Boscariol RL, Monteiro M, Takahashi EK, Chabregas SM, Vieira MLC, Vieira LGE, Pereira LFP, Mourao Filho FAA, Cardoso SC, Christiano RSC, Bergamin Filho A, Barbosa JM, Azevedo FA, Mendes BMJ (2006) Attacin A gene from Triclopusia ni reduces susceptibility to Xanthomonas axonopodis pv. citri in transgenic Citrus sinensis Hamlin. J Am Soc Hortic Sci 131:530–536

    CAS  Google Scholar 

  • Calovic M, Viloria Z, Nielsen B, Gmitter FG Jr, Castle WS, Grosser JW (2003) Somatic embryogenesis from lemon styles and analysis of genetic stability in regenerated plants using RAPD and flow cytometry. Proc Int Soc Citric 1:131–134

    Google Scholar 

  • Cameron JW, Burnett RH (1978) Use of sexual tetraploids seed parents for production of triploid citrus hybrids. HortScience 13:167–169

    Google Scholar 

  • Cameron JW, Soost RK (1969) Citrus. In: Ferwerda FR, Wit F (eds) Outlines of perennial crop breeding in the tropics. Veenman and Zonen, Wageningen, Netherlands, pp 129–162

    Google Scholar 

  • Carimi F, De Pasquale F, Crescimanno FG (1995) Somatic embryogenesis in Citrus from styles culture. Plant Sci 105:81–86

    CAS  Google Scholar 

  • Carimi F, Tortorici MC, De Pasquale F, Crescimanno FG (1998) Somatic embryogenesis and plant regeneration from undeveloped ovules and stigma/style explants of sweet orange navel group [Citrus sinensis (L.) Osb.]. Plant Cell Tiss Org Cult 54:183–189

    Google Scholar 

  • Carimi F, De Pasquale F, Crescimanno FG (1999) Somatic embryogenesis and plant regeneration from pistil thin cell layers of Citrus. Plant Cell Rep 18:935–940

    CAS  Google Scholar 

  • Cavalcante-Alves JM, Pasqual M, Dutra LF, Alves GP, Finotti DR (2003) In vitro culture of immature embryos from ‘Ponca’ Mandarin fertilized by ‘Pera’ orange: Photoperiod. Proc Int Soc Citric 1:92–93

    Google Scholar 

  • Cercós M, Soler G, Iglesias DJ, Gadea J, Forment J, Talon M (2006) Global analysis of gene expression during development and ripening of citrus fruit flesh. A proposed mechanism for citric acid utilization. Plant Mol Biol 62(4/5):513–527

    PubMed  Google Scholar 

  • Cervera M, Juarez J, Navarro A, Pina JA, Duran-Vila N, Navarro L, Pena L (1998) Genetic transformation and regeneration of mature tissues of woody fruit plants bypassing the juvenile stage. Transgenic Res 7:51–59

    CAS  Google Scholar 

  • Cervera M, Ortega C, Navarro A, Navarro L, Pena L (2000) Generation of transgenic citrus plants with the tolerance to salinity gene HAL2 from yeast. J Hortic Sci Biotechnol 75:26–30

    CAS  Google Scholar 

  • Chaturvedi HC, Mitra GC (1974) A shift in morphogenetic pattern in citrus callus tissue during prolonged culture. Ann Bot 39:683–687

    Google Scholar 

  • Chaturvedi HC, Sharma AK (1985) Production of androgenic plants of Citrus aurantifolia. J Plant Physiol 119:473–477

    Google Scholar 

  • Chen D-C, Ou Y-R (1985) An promising mutated polyploids-tetroploid ‘Shiyueju’. China Citrus 3:2–3 (in chinese)

    Google Scholar 

  • Chen Z, Wang M, Liao H (1980) The induction of Citrus pollen plants in artificial media. Acta Genet Sin 7:189–191

    Google Scholar 

  • Chen C, Zheng Q, Xiang X, Soneji JR, Huang S, Choi YA, Nageswara Rao M, Gmitter FG Jr (2007) Development of new GFP binary Ti vectors and evaluation on citrus Agrobacterium-mediated transformation. HortScience 42(1):7–10

    CAS  Google Scholar 

  • Chen C, Bowman KD, Choi YA, Dang PM, Nageswara Rao M, Huang S, Soneji JR, McCollum TG, Gmitter FG Jr (2008) EST-SSR genetic maps for Citrus sinensis and Poncirus trifoliata. Tree Genet Genomes 4:1–10

    Google Scholar 

  • Cheng FS, Roose ML (1995) Origin and inheritance of dwarfing by Citrus rootstock Poncirus trifoliata “Flying Dragon”. J Am Soc Hortic Sci 120:286–291

    Google Scholar 

  • Chiancone B, Tassoni A, Bagni N, Germana MA (2006) Effect of polyamines on in vitro anther culture of Citrus clementina Hort. ex Tan. Plant Cell Tiss Organ Cult 87:145–153

    CAS  Google Scholar 

  • Close TJ, Wanamaker S, Lyon M, Mei G, Davies C, et al (2006) A GeneChip R for Citrus. In: Plant and Animal Genome 14th Conference, San Diego, CA, USA, W82, p 26

    Google Scholar 

  • Costa MCG, Otoni WC, Moore GA (2002) An evaluation of factors affecting the efficiency of Agrobacterium-mediated transformation of Citrus paradisi (macf.) and production of transgenic plants containing carotenoid biosynthetic genes. Plant Cell Rep 21:365–373

    CAS  Google Scholar 

  • Cristofani M, Machado MA, Grattapaglia D (1999) Genetic linkage maps of Citrus sunki Hort. ex. Tan. and Poncirus trifoliata (L.) Raf. and mapping of citrus tristeza virus resistance gene. Euphytica 109:25–32

    CAS  Google Scholar 

  • Dalkilic Z, Timmer LW, Gmitter FG Jr (2005) Linkage of Alternaria disease resistance gene in mandarin hybrids with RAPD fragments. J Am Soc Hortic Sci 130:191–195

    CAS  Google Scholar 

  • Davies FS, Albrigo LG (1994) Citrus. CABI, Wallingford, UK

    Google Scholar 

  • de Simone M, Russo MP, Puelo G, Marsan PA, Lorenzoni C, Marocco A, Recupero GR (1998) Construction of genetic maps for Citrus aurantium and C. latipes based on AFLP, RAPD and RFLP markers. Fruits 53:383–390

    Google Scholar 

  • Deng Z, Zhang WC (1988) Mutagenic effects of EMS (ethylmethanesulphonate) on chromosomes of pollen mother cells in kumquat. China Citrus 17:5–7

    Google Scholar 

  • Deng Z, Zhang WC, Wan SY (1993) In vitro induction and protoplast plant regeneration from NaCl-tolerant lines in Citrus. Acta Hortic Sin 20:127–131

    Google Scholar 

  • Deng Z, Huang S, Xiao S, Gmitter FG Jr (1997) Development and characterization of SCAR markers linked to the citrus tristeza virus resistance gene from Poncirus trifoliata. Genome 40:697–704

    PubMed  CAS  Google Scholar 

  • Deng Z, Huang S, Ling P, Yu C, Tao Q, Chen C, Wendell MK, Zhang HB, Gmitter FG Jr (2001) Fine genetic mapping and BAC contig development for the citrus tristeza virus resistance gene locus in Poncirus trifoliata (Raf.). Mol Genet Genom 265:739–747

    CAS  Google Scholar 

  • Dominguez A, Guerri J, Cambra M, Navarro L, Moreno P, Pena L (2000) Efficient production of transgenic citrus plants expressing the coat protein gene of citrus tristeza virus. Plant Cell Rep 19:427–433

    CAS  Google Scholar 

  • Dominguez A, Fagoaga C, Navarro L, Moreno P, Pena L (2002a) Constitutive expression of untranslatable versions of the p25 coat protein gene in Mexican lime (Citrus aurantifolia (Christm.) Swing.) transgenic plants does not confer resistance to Citrus tristeza virus (CTV). In: Duran-Vila N, Milne RG, Da Graca JV (eds) Proceedings of 15th conference of the international organization of citrus virology. University of California, Riverside, USA, pp 341–344

    Google Scholar 

  • Dominguez A, Hermoso de Mendoza A, Guerri J, Cambra M, Navarro L, Moreno P, Pena L (2002b) Pathogen-derived resistance to Citrus tristeza virus (CTV) in transgenic Mexican lime (Citrus aurantifolia (Christ.) Swing.) plants expressing its p25 coat protein gene. Mol Breed 10:1–10

    CAS  Google Scholar 

  • Duan Y, Liu X, Fan J, Li D, Wu R, Guo W (2007) Multiple shoot induction from seedling epicotyls and transgenic citrus plant regeneration containing the green fluorescent protein gene. Bot Stud 48:165–171

    Google Scholar 

  • Duran-Vila N (1995) Cryopreservation of germplasm of citrus. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 32, Cryopreservation of plant germplasm I. Springer, Berlin, pp 70–86

    Google Scholar 

  • Duran-Vila N, Ortega V, Navarro L (1989) Morphogenesis and tissue cultures of three citrus species. Plant Cell Tiss Org Cult 16:123–133

    Google Scholar 

  • Durham RE, Liou PC, Gmitter FG Jr, Moore GA (1992) Linkage of restriction fragment length polymorphisms and isozymes in Citrus. Theor Appl Genet 84:39–48

    CAS  Google Scholar 

  • Fagoaga C, Rodrigo I, Conejero V, Hinarejos C, Tuset JJ, Arnau J, Pina JA, Navarro L, Pena L (2001) Increased tolerance to Phytophthora citrophthora in transgenic orange plants overexpressing a tomato pathogenesis related protein PR-5. Mol Breed 7:175–181

    CAS  Google Scholar 

  • Fagoaga C, Lopez C, Moreno P, Navarro L, Flores R, Pena L (2005) Viral-like symptoms induced by the ectopic expression of the p23 gene of Citrus tristeza virus are citrus-specific and do not correlate with the pathogenicity of the virus strain. Mol Plant Microbe Interact 18:435–445

    PubMed  CAS  Google Scholar 

  • Fagoaga C, Lopez C, de Mendoza AH, Moreno P, Navarro L, Flores R, Pena L (2006) Post-transcriptional gene silencing of the p23 silencing suppressor of Citrus tristeza virus confers resistance to the virus in transgenic Mexican lime. Plant Mol Biol 60:153–165

    PubMed  CAS  Google Scholar 

  • Fang DQ, Federici CT, Roose ML (1997) Development of molecular markers linked to gene controlling fruit acidity in citrus. Genome 40:841–849

    PubMed  CAS  Google Scholar 

  • FAO (2006) Developments in international citrus trade in 2004–2005. Food and Agriculture Organization of the United Nations, Rome. http://www.fao.org/es/esc/en/20953/20990/highlight_28187en.html

  • Febres VJ, Niblett CL, Lee RF, Moore GA (2003) Characterization of grapefruit plants (Citrus paradisi Macf.) transformed with citrus tristeza closterovirus genes. Plant Cell Rep 21:421–428

    PubMed  CAS  Google Scholar 

  • Fleming GH, Olivares-Fuster O, Fatta Del-Bosco S, Grosser JW (2000) An alternative method for the genetic transformation of sweet orange. In Vitro Cell Dev Biol Plant 36:450–455

    CAS  Google Scholar 

  • Forment J, Gadea J, Huerta L, Abizanda L, Agusti J et al (2005) Development of a citrus genome wide EST collection and cDNA microarray as resources for genomic studies. Plant Mol Biol 57:375–391

    PubMed  CAS  Google Scholar 

  • Fujii H, Shimada T, Sugiyama A, Nishikawa F, Endo T, Nakano M, Ikoma Y, Shimizu T, Omura M (2007) Profiling ethylene-responsive genes in mature mandarin fruit using a citrus 22K oligoarray. Plant Sci 173(3):340–348

    CAS  Google Scholar 

  • Furr JR (1969) Citrus breeding for the arid southwestern United States. In: Chapman HD (ed) Proceedings of 1st international citrus symposium, vol 1. University of California, Riverside, CA, USA, pp 191–197

    Google Scholar 

  • Gandia M, Conesa A, Guerri J, Gema A, Gadea J, Forment J, Vicente P, Ricardo F, Duran vila N, Moreno P (2007) Transcriptional response of Citrus aurantifolia infection by citrus tristeza virus. Virology 367(2):298–306

    PubMed  CAS  Google Scholar 

  • Garcia R, Asins MJ, Forner J, Carbonell EA (1999) Genetic analysis of apomixis in Citrus and Poncirus by molecular markers. Theor Appl Genet 99:511–518

    CAS  Google Scholar 

  • Garcia R, Asins MJ, Carbonell EA (2000) QTL analysis of yield and seed number in Citrus. Theor Appl Genet 101:487–493

    CAS  Google Scholar 

  • Gentile A, LaMalfa S, Deng ZN, Domina F, Nicolosi E, Tribulato E (1998) Transgenic citrus: first experiences with Rol genes. Riv Frutticolt Ortofloricolt 61:59–61

    Google Scholar 

  • Germana MA, Chiancone B (2001) Gynogenetic haploids of Citrus after in vitro pollination with triploid pollen grains. Plant Cell Tiss Org Cult 66:59–66

    CAS  Google Scholar 

  • Germana MA, Reforgiato G (1997) Haploid embryos regeneration from anther culture of ‘Mapo’ tangelo (Citrus deliciosa x C. paradisi). Adv Hortic Sci 11:147–152

    Google Scholar 

  • Germana MA, Crescimanno FG, Reforgiato G, Russo MP (1991) Androgenesis in 5 cultivars of Citrus limon L. Burm. Acta Hortic 300:315–324

    Google Scholar 

  • Germana MA, Wang YY, Barbagallo MG, Lannolino G, Crescimanno FG (1994) Recovery of haploid and diploid plantlets from anther culture of Citrus clementina Hort. Ex Tan. and Citrus reticulata Blanco. J Hortic Sci 69:473–480

    Google Scholar 

  • Ghorbel R, Juarez J, Navarro L, Pena L (1999) Green fluorescent protein as a screenable marker to increase the efficiency of generating transgenic woody fruit plants. Theor Appl Genet 99:350–358

    Google Scholar 

  • Ghorbel R, Dominguez A, Navarro L, Pena L (2000) High efficiency genetic transformation of sour orange (Citrus aurantium L.) and production of transgenic trees containing the coat protein gene of citrus tristeza virus. Tree Physiol 20:1183–1189

    PubMed  Google Scholar 

  • Ghorbel R, LaMalfa S, Lopez MM, Petit A, Navarro L, Pena L (2001) Additional copies of virG from pTiBo542 provide a super-transformation ability to Agrobacterium tumefaciens in citrus. Physiol Mol Plant Pathol 58:103–110

    CAS  Google Scholar 

  • Gmitter FG Jr, Hu X (1990) The possible role of Yunnan, China in the origin of contemporary Citrus species (Rutaceae). Econ Bot 44:267–277

    Google Scholar 

  • Gmitter FG Jr, Ling X (1991) Embryogenesis in vitro and nonchimeric tetraploid plant recovery from undeveloped citrus ovules treated with colchicines. J Am Soc Hortic Sci 116:317–321

    Google Scholar 

  • Gmitter FG Jr, Moore GA (1986) Plant regeneration from undeveloped ovules and embryogenic calli of Citrus: embryo production, germination, and plant survival. Plant Cell Tiss Organ Cult 6:39–147

    Google Scholar 

  • Gmitter FG Jr, Ling XB, Deng XX (1990) Induction of triploid citrus plants from endosperm calli in vitro. Theor Appl Genet 80:785–790

    Google Scholar 

  • Gmitter FG Jr, Ling XB, Cai CY, Grosser JW (1991) Colchicine-induced polyploidy in citrus embryogenic cultures, somatic embryos and regenerated plants. Plant Sci 74:135–141

    CAS  Google Scholar 

  • Gmitter FG Jr, Grosser JW, Moore GA (1992) Citrus. In: Hammerschlag FA, Litz RE (eds) Biotechnology of perennial fruit crops. CABI, Wallingford, UK, pp 335–369

    Google Scholar 

  • Gmitter FG Jr, Xiao SY, Huang S, Hu XL, Garnsey SM, Deng Z (1996) A localized linkage map of the citrus tristeza virus resistance gene region. Theor Appl Genet 92:688–695

    CAS  Google Scholar 

  • Gmitter FG Jr, Chen C, Nageswara Rao M, Soneji JR (2007) Citrus. In: Kole C (ed) Genome mapping and molecular breeding in plants, vol 4, Fruits and nuts. Springer, Heidelberg, pp 265–279

    Google Scholar 

  • Gmitter FG Jr, Soneji JR, Nageswara Rao M, Huang S (2008) Citrus. In: Janick J, Paull RE (eds) The encyclopedia of fruits and nuts. CABI, Wallingford, UK

    Google Scholar 

  • Gmitter FG Jr, Soneji JR, Nageswara Rao M (2009) Citrus Breeding. In: Jain SM, Priyadarshan PM (eds) Breeding plantation tree crops: temperate species. Springer Science and Business Media, New York, NY, USA, pp 105–134

    Google Scholar 

  • Grosser JW, Gmitter FG Jr (2005) “Thinking outside the cell”: applications of somatic hybridization and cybridization in crop improvement, with citrus as a model. In Vitro Cell Dev Biol Plant 41:220–225

    Google Scholar 

  • Grosser JW, Jiang J, Mourao-Fo FAA, Louzada ES, Baergen K, Chandler JL, Gmitter FG Jr (1998) Somatic hybridization, an integral component of citrus cultivar improvement: I Scion improvement. HortScience 33:1057–1059

    Google Scholar 

  • Grosser JW, Chandler JL, Gmitter FG Jr (2003) Development of improved sweet oranges via somaclonal variation. Proc Intl Soc Citric 1:42–45

    Google Scholar 

  • Guerra MS (1984) Cytogenetics of Rutaceae. II. Nuclear DNA content. Caryologia 37:219–226

    CAS  Google Scholar 

  • Guerra MS (1993) Cytogenetics of Rutaceae. V. High chromosomal variability in Citrus species revealed by CMA/DAPI staining. Heredity 71:234–241

    Google Scholar 

  • Gulsen O, Roose ML (2001a) Lemons: diversity and relationships with selected Citrus enotypes as measured with nuclear genome markers. J Am Soc Hortic Sci 126:309–327

    CAS  Google Scholar 

  • Gulsen O, Roose ML (2001b) Chloroplast and nuclear genome analysis of the parentage of lemons. J Am Soc Hortic Sci 126:210–215

    CAS  Google Scholar 

  • Gulsen O, Uzun A, Pala H, Canihos E, Kafa G (2007) Development of seedless and Mal Secco tolerant mutant lemons through budwood irradiation. Sci Hortic 112(2):184–190

    Google Scholar 

  • Guo WW, Duan Y, Olivares-Fuster O, Wu Z, Arias CR, Burns JK, Grosser JW (2005) Protoplast transformation and regeneration of transgenic Valencia sweet orange plants containing a juice quality-related pectin methylesterase gene. Plant Cell Rep 24:482–486

    PubMed  CAS  Google Scholar 

  • Guolu L (1988) Studies of the Giemsa C-banding patterns of some Citrus and its related genera. Acta Genet Sin 15:409–415 (in Chinese with English abstract)

    Google Scholar 

  • Gutierrez MA, Luth D, Moore GA (1997) Factors affecting Agrobacterium-mediated transformation in Citrus and production of sour orange (Citrus aurantium L.) plants expressing the coat protein gene of citrus tristeza virus. Plant Cell Rep 16:745–753

    Google Scholar 

  • Hearn CJ (1984) Development of seedless orange and grapefruit cultivars through seed irradiation. J Am Soc Hortic Sci 109:270–273

    Google Scholar 

  • Hensz RA (1977) Mutation breeding and the development of the ‘Star Ruby’ grapefruit. Proc Int Soc Citric 2:582–585

    Google Scholar 

  • Herrero R, Asins MJ, Carbonell EA, Navarro L (1996) Genetic diversity in the orange subfamily Aurantioideae. I. Intraspecies and intragenus genetic variability. Theor Appl Genet 92:599–609

    CAS  Google Scholar 

  • Hidaka T, Omura M (1989) Origin and development of embryoids from microspores in anther culture of citrus. Jpn J Breed 39:169–178

    Google Scholar 

  • Hidaka T, Omura M (1993) Transformation of citrus protoplasts by electroporation. J Jpn Soc Hortic Sci 62:371–376

    CAS  Google Scholar 

  • Hidaka T, Omura M, Ugaki M, Tomiyama M, Kato A, Ohshima M, Motoyoshi F (1990) Agrobacterium-mediated transformation and regeneration of Citrus spp. from suspension cells. Jpn J Breed 40:199–207

    Google Scholar 

  • Hisada S, Akihama T, Endo T, Moriguchi T, Omura M (1997) Expressed sequence tags of Citrus fruit during rapid cell development phase. J Am Soc Hortic Sci 122(6):808–812

    CAS  Google Scholar 

  • Huang T, Peng SL, Dong GF, Zhang LY, Li GG (2002) Plant regeneration from leaf-derived callus in Citrus grandis (pummelo): effects of auxins in callus induction medium. Plant Cell Tiss Org Cult 69:141–146

    Google Scholar 

  • IBPGR (1982) Genetic resources of Citrus. Report of Working Group, Tsukuba, Japan, 4–6 Nov 1981, 13 p

    Google Scholar 

  • Jajoo A (2010) In vitro propagation of Citrus limonia Osbeck through nucellar embryo culture. Curr Res J Biol Sci 2:6–8

    CAS  Google Scholar 

  • Karasawa K (1971) On the occurrence of haploid seedlings in Citrus natsudaidai Hayata. Bull Sakushingakuin Jr Coll Women 1:1–2

    Google Scholar 

  • Kepiro J (2004) Molecular genetic analysis of nucellar embryony (apomixis) in Citrus maxima x Poncirus trifoliata. PhD Dissertation, University of California, Riverside, CA, USA, 220 p

    Google Scholar 

  • Kim M-H, Lee H, Chung M-S, Jo J (2001) Factors affecting efficiency of shoot induction in Citrus junos Sieb. J Plant Biotechnol 3:141–144

    Google Scholar 

  • Kobayashi S, Uchimiya H (1989) Expression and integration of a foreign gene in orange (Citrus sinensis Osb.) protoplasts by direct DNA transfer. Jpn J Genet 64:91–97

    Google Scholar 

  • Kobayashi S, Sakai A, Oiyama I (1990) Cryopreservation in liquid nitrogen of cultured navel orange (Citrus sinensis Osb.) nucellar cells and subsequent plant regeneration. Plant Cell Tiss Org Cult 23:15–20

    Google Scholar 

  • Kobayashi AK, Bespalhok JC, Pereira LFP, Vieira LGE (2003) Plant regeneration of sweet orange (Citrus sinensis) from thin sections of mature stem segments. Plant Cell Tiss Org Cult 74:99–102

    CAS  Google Scholar 

  • Kotsias D, Roussos PA (2001) An investigation on the effect of different plant growth regulating compounds in in vitro shoot tip and node culture of lemon seedlings. Sci Hortic 89:115–128

    CAS  Google Scholar 

  • Krueger RR, Navarro L (2007) Citrus germplasm resources. In: Khan I (ed) Citrus: genetic, breeding and biotechnology. CABI, Wallingford, UK, pp 45–140

    Google Scholar 

  • Lahey KA, Yuan R, Burns JK, Ueng PP, Timmer LW, Chung KR (2004) Induction of phytohormones and differential gene expression in citrus flowers infected by the fungus Colletotrichum acutatum. Mol Plant Microbe Interact 17(12):1394–1401

    PubMed  CAS  Google Scholar 

  • Lambardi M, De Carlo A, Biricolti S, Puglia AM, Lombardo G, Siragusa M, De Pasquale F (2004) Zygotic and nucellar embryo survival following dehydration/cryopreservation of Citrus intact seeds. CryoLetters 25:81–90

    PubMed  CAS  Google Scholar 

  • Li C-S, Zhang M-Z (1988) Seedless Fortunella tetroploid induced by colchicine. China Citrus 17:39 (in Chinese)

    Google Scholar 

  • Li DD, Shi W, Deng XX (2002) Agrobacterium-mediated transformation of embryogenic calluses of Ponkan mandarin and the regeneration of plants containing the chimeric ribonuclease gene. Plant Cell Rep 21:153–156

    CAS  Google Scholar 

  • Li DD, Shi W, Deng XX (2003) Factors influencing Agrobacterium-mediated embryogenic callus transformation of Valencia sweet orange (Citrus sinensis) containing the pTA29-barnase gene. Tree Physiol 23:1209–1215

    PubMed  CAS  Google Scholar 

  • Ling P, Duncan LW, Deng Z, Dunn D, Xu X, Huang S, Gmitter FG Jr (2000) Inheritance of citrus nematode resistance and its linkage with molecular markers. Theor Appl Genet 101:1010–1017

    Google Scholar 

  • Liou PC (1990) A molecular study of the Citrus genome through analysis of restriction fragment length polymorphism and isozyme mapping. Doctorial Dissertation, University of Florida, Gainesville, FL, USA

    Google Scholar 

  • Luro F, Laigret F, Lorieux M, Ollitrault P (1996) Citrus genome mapping with molecular markers: two maps obtained by segregation analysis of progeny of one intergeneric cross. Proc Intl Soc Citricult 2:862–866

    Google Scholar 

  • Luth D, Moore G (1999) Transgenic grapefruit plants obtained by Agrobacterium tumefaciens-mediated transformation. Plant Cell Tiss Org Cult 57:219–222

    CAS  Google Scholar 

  • Maheshwari P, Rangaswamy NS (1958) Polyembryony and in vitro culture of embryos of Citrus and Mangifera. Indian J Hortic 15:275–282

    Google Scholar 

  • Malik SK, Chaudhury R (2006) The cryopreservation of embryonic axes of two wild and endangered Citrus species. Plant Genet Resour 4(3):204–209

    Google Scholar 

  • Manner HI, Buker RS, Smith VE, Elevitch CR (2006) Citrus species (citrus), ver. 2.1. In: Elevitch CR (ed) Specific profiles for Pacific Island agroforestry (http://www.traditionaltree.org). Permanent Agriculture Resources, Hawaii, USA, pp 1–35

  • Marin ML, Duran-Vila N (1988) Survival of somatic embryos and recovery of plants of sweet orange [Citrus sinensis (L.) Osb.] after immersion in liquid nitrogen. Plant Cell Tiss Org Cult 14:51–57

    Google Scholar 

  • Matsuyama T, Akihama T, Ito Y, Omura M, Fukui K (1996) Characterization of heterochromatic regions in ‘Trovita’ orange (Citrus sinensis Osbeck) chromosomes by the fluorescent staining and FISH methods. Genome 39:941–945

    PubMed  CAS  Google Scholar 

  • Mendes BMJ, Boscariol RL, Mourao Filho FAA, Almeida WAB (2002) Agrobacterium-mediated genetic transformation of Hamlin sweet orange. Pesquisa Agropecuaria Brasileira 37:955–961

    Google Scholar 

  • Miranda M, Ikeka F, Endo T, Morigushi T, Omura M (1997) Comparative analysis on the distribution of heterochromatin in Citrus, Poncirus and Fortunella chromosomes. Chrom Res 5:86–92

    PubMed  CAS  Google Scholar 

  • Moore GA (1986) In vitro propagation of Citrus rootstocks. HortScience 21:300–301

    CAS  Google Scholar 

  • Moore GA (2001) Oranges and lemons: clues to the taxonomy of Citrus from molecular markers. Trends Genet 17:536–540

    PubMed  CAS  Google Scholar 

  • Moraes A, Soares Filho WS, Guerra M (2007) Karyotype diversity and the origin of grapefruit. Chrom Res 15:115–121

    PubMed  CAS  Google Scholar 

  • Mourao Fo FAA, Grosser JW (1992) Callus induction from citrus relatives: an alternative source of protoplasts for somatic hybridization experiments. Proc FL State Hortic Soc 105:52–56

    Google Scholar 

  • Moya JL, Gómez-Cadenas A, Primo-Millo E, Talón M (2003) Chloride absorption in salt-sensitive Carrizo citrange and salt-tolerant Cleopatra mandarin citrus rootstocks is linked to water use. J Exp Bot 54(383):825–833

    PubMed  CAS  Google Scholar 

  • Mukhtar R, Khan MM, Rafiq R, Shahid A, Khan FA (2005) In vitro regeneration and somatic embryogenesis in Citrus aurantifolia and Citrus sinesis. Int J Agric Biol 7(3):518–520

    Google Scholar 

  • Mumford PM, Grout WW (1979) Desiccation and low temperature (−196°C) tolerance of Citrus limon seed. Seed Sci Technol 7:407–410

    Google Scholar 

  • Nadel B, Spiegel-Roy P (1987) Selection of Citrus limon cell culture variants resistant to the Mal secco toxin. Plant Sci 53:177–182

    CAS  Google Scholar 

  • Nageswara Rao M, Soneji JR, Chen C, Huang S, Gmitter FG Jr (2008) Characterization of zygotic and nucellar seedlings from sour orange-like citrus rootstock candidates using RAPD and EST-SSR markers. Tree Genet Genomes 4:113–124

    Google Scholar 

  • Naithani SP, Raghuvanshi SS (1958) Cytogenetical studies in the genus Citrus. Nature 181:1406–1407

    Google Scholar 

  • Nicolosi E, Deng ZN, Gentile A, La Malfa S, Continella G, Tribulato E (2000) Citrus phylogeny and genetic origin of important species as investigated by molecular markers. Theor Appl Genet 100:1155–1166

    CAS  Google Scholar 

  • Niedz RP, Sussman MR, Satterlee JS (1995) Green fluorescent protein: an in vivo reporter of plant gene expression. Plant Cell Rep 14:403–406

    CAS  Google Scholar 

  • Niedz RP, McKendree WL, Shatters JR (2003) Electroporation of embryogenic protoplasts of sweet orange (Citrus sinensis (L.) Osbeck) and regeneration of transformed plants. In Vitro Cell Dev Biol Plant 36:586–594

    Google Scholar 

  • Nito N, Iwamasa M (1990) In vitro plantlet formation from juice vesicle callus of Satsuma (Citrus unshiu Marc.). Plant Cell Tiss Org Cult 20:137–140

    Google Scholar 

  • Olivares-Fuster O, Fleming GH, Albiach-Marti MR, Gowda S, Dawson WO, Grosser JW (2003) Citrus tristeza virus (CTV) resistance in transgenic citrus based on virus challenge of protoplasts. In Vitro Cell Dev Biol Plant 39:567–572

    CAS  Google Scholar 

  • Ollitrault P, Allent V, Luro F (1996) Production of haploid plants and embryogenic calli of clementine (Citrus reticulata Blanco) after in situ parthenogenesis induced by irradiated pollen. Proc Intl Soc Citricult 2:913–917

    Google Scholar 

  • Omar AA, Grosser JW (2007) Protoplast co-transformation and regeneration of transgenic ‘Hamlin’ sweet orange plants containing a cDNA Xa21 Xanthomonas resistance gene and GFP. Acta Hortic 738:235–243

    CAS  Google Scholar 

  • Omura M, Hidaka T (1992) Shoot tip culture of Citrus. I. Longetivity of cultured shoots. Bull Fruit Tree Res Sta 22:37–47

    Google Scholar 

  • Pena L, Cervera M, Juarez J, Navarro A, Pina JA, Duran-Vila N, Navarro L (1995) Agrobacterium-mediated transformation of sweet orange and regeneration of transgenic plants. Plant Cell Rep 14:616–619

    CAS  Google Scholar 

  • Pena L, Cervera M, Juarez J, Navarro A, Pina JA, Navarro L (1997) Genetic transformation of lime (Citrus aurantifolia Swing.): factors affecting transformation and regeneration. Plant Cell Rep 16:731–737

    CAS  Google Scholar 

  • Pena L, Martin-Trillo M, Juarez J, Pina JA, Navarro L, Martinez-Zapater JM (2001) Constitutive expression of Arabidopsis LEAFY and APETALA1 genes in citrus reduces their generation time. Nat Biotechnol 19:263–267

    PubMed  CAS  Google Scholar 

  • Perez RM (2000) Cryostorage of Citrus embryogenic cultures. In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants, vol 6. Kluwer, Dordrecht, Netherlands, pp 687–705

    Google Scholar 

  • Perez-Molphe E, Ochoa-Alejo N (1998) Regeneration of transgenic plants of Mexican lime from Agrobacterium rhizogenes-transformed tissues. Plant Cell Rep 17:591–596

    Google Scholar 

  • Perez-Tornero O, Porras I (2008) Assessment of polyembryony in lemon: rescue and in vitro culture of immature embryos. Plant Cell Tiss Org Cult 93:173–180

    Google Scholar 

  • Raghuvanshi SS (1962) Cytogenetical studies in the genus Citrus IV. Evolution in genus Citrus. Cytologia 27:172–188

    Google Scholar 

  • Rangan TS, Murashige T, Bitters WP (1969) In vitro studies of zygotic and nucellar embryogenesis in citrus. In: Chapman HD (ed) Proceedings of 1st international citrus symposium, vol 1. University of California, Riverside, CA, USA, pp 225–229

    Google Scholar 

  • Recupero GR, de Simone M, Natoli A, Marsan PA, Russo MP, Marocco A (2000) Development of molecular maps for rootstock breeding in Citrus. In: Goren R, Goldschmidt EE (eds) Proc Int Soc Hortic Sci (ISHS), Leuven, Belgium. Acta Hortic 535:33–35

    CAS  Google Scholar 

  • Reuther W (1977) Genetic resources conservation of citrus species and near relatives from the international point of view. Proc Intl Soc Citricult 2:604–606

    Google Scholar 

  • Rodriguez A, Cervera M, Peris JE, Pena L (2008) The same treatment for transgenic shoot regeneration elicits the opposite effect in mature explants from two closely related sweet orange (Citrus sinensis (L.) Osb.) genotypes. Plant Cell Tiss Organ Cult 93:97–106

    Google Scholar 

  • Romero-Aranda R, Moya JL, Tadeo FR, Legaz F, Primo-Millo E, Talon M (1998) Physiological and anatomical disturbances induced by chloride salts in sensitive and tolerant citrus: beneficial and detrimental effects of cations. Plant Cell Environ 21(12):1243–1253

    CAS  Google Scholar 

  • Roose ML, Close TJ (2008) Genomics of Citrus, a major fruit crop of tropical and subtropical regions. In: Moore PH, Ming R (eds) Genomics of tropical crop plants. Springer, New York, NY, USA, pp 187–201

    Google Scholar 

  • Roose ML, Schwarzacher T, Heslop-Harrison JS (1998) The chromosomes of Citrus and Poncirus species and hybrids: Identification of characteristic chromosomes and physical mapping of rDNA loci using in situ hybridization and fluorochrome banding. J Hered 89(1):83–86

    PubMed  CAS  Google Scholar 

  • Roose ML, Feng D, Cheng FS, Tayyar RI, Federici CT, Kupper RS (2000) Mapping the citrus genome. In: Goren R, Goldschmidt EE (eds) Proc Int Soc Hortic Sci (ISHS), Leuven, Belgium. Acta Hortic 535:25–32

    CAS  Google Scholar 

  • Ruiz C, Asins MJ (2003) Comparison between Poncirus and Citrus genetic linkage maps. Theor Appl Genet 106:826–836

    PubMed  CAS  Google Scholar 

  • Sankar AA, Moore GA (2001) Evaluation of inter-simple sequence repeat analysis for mapping in Citrus and extension of the genetic linkage map. Theor Appl Genet 102:206–214

    CAS  Google Scholar 

  • Sauton A, Moura A, Lutz A (1982) Plant regeneration from citrus root meristems. J Hortic Sci 57:227–231

    Google Scholar 

  • Schneider H (1968) The anatomy of citrus. In: Webber HJ, Batchelor LD (eds) The citrus industry, vol 1. University of California, Barkley, CA, USA, pp 1–85

    Google Scholar 

  • Scora RW (1975) On the history and origin of Citrus. Bull Torrey Bot Club 102:369–375

    Google Scholar 

  • Shimada T, Kita M, Endo T, Fujii H, Ueda T, Moriguchi T, Omura M (2003) Expressed sequence tags of ovary tissue cDNA library in Citrus unshiu, Marc. Plant Sci 165(1):167–168

    CAS  Google Scholar 

  • Shimada T, Fujii H, Endo T, Yakazi J, Kishimoto N, Shimbo K, Kikuchi S, Omura M (2005) Toward comprehensive expression profiling by microarray analysis in citrus: monitoring the expression profiles of 2213 genes during fruit development. Plant Sci 168(5):1383–1385

    CAS  Google Scholar 

  • Siviero A, Cristofani M, Furtado EL, Garcia AAF, Coelho ASG, Machado MA (2006) Identification of QTLs associated with citrus resistance to Phytophthora gummosis. J Appl Genet 47:23–28

    PubMed  Google Scholar 

  • Snowdon R, Kusterer B, Horn R (2002) Structural genome analysis using molecular cytogenetic techniques. In: Esser K, Luttge U, Beyschlag W (eds) Progress in botany, vol 63. Springer, Berlin, pp 55–79

    Google Scholar 

  • Soneji JR, Chen C, Nageswara Rao M, Huang S, Choi YA, Gmitter FG Jr (2007) Agrobacterium-mediated transformation of citrus using two binary vectors. Acta Hortic 738:261–264

    CAS  Google Scholar 

  • Soost RK, Roose ML (1996) Citrus. In: Janick J, Moore JN (eds) Fruit breeding, vol I: Tree and tropical fruits. Wiley, New York, USA, pp 257–323

    Google Scholar 

  • Spiegel-Roy P, Goldschmidt EE (1996) Biology of citrus. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Starrantino A, Russo R (1980) Seedlings from undeveloped ovules of ripe fruits of polyembryonic citrus cultivars. HortScience 15:296–297

    Google Scholar 

  • Swingle WT, Reece PC (1967) The botany of citrus and its wild relatives. In: Reuther W, Webber HJ, Batchelor LD (eds) The citrus industry, vol 1. University of California Press, Berkley, CA, USA, pp 190–430

    Google Scholar 

  • Sykes SR (1987) Rootstock breeding in Australia: past and present. In: Walker RR (ed) Proceedings of citrus breeding workshop. CSIRO, Clayton South, Australia, pp 87–92

    Google Scholar 

  • Talon M, Gmitter FG Jr (2008) Citrus genomics. Int J Plant Genom 528361. doi:10.1155/2008/528361

  • Tanaka T (1954) Species problem in Citrus. Japan Society for Promotion of Science, Tokyo, Japan, 152 p

    Google Scholar 

  • Tanaka T (1977) Fundamental discussion of Citrus classification. Stud Citrol 14:1–6

    Google Scholar 

  • Torres AM, Mau-Lastovicka T, Williams TE, Soost RK (1985) Segregation distortion and linkage of Citrus and Poncirus isozyme genes. J Hered 76:289–294

    CAS  Google Scholar 

  • Tozlu I, Guy CL, Moore GA (1999a) QTL analysis of Na+ and Cl accumulation related traits in an intergeneric BC1 progeny of Citrus and Poncirus under saline and nonsaline environments. Genome 42:692–705

    CAS  Google Scholar 

  • Tozlu I, Guy CL, Moore GA (1999b) QTL analysis of morphological traits in an intergeneric BC1 progeny of Citrus and Poncirus under saline and nonsaline environments. Genome 42:1020–1029

    CAS  Google Scholar 

  • Trainin T, Lipsky A, Levy AA, Holland D (2005) Prolonged somatic transposition in citrus: the autonomous Ac transposable element remains active in the citrus genome for several years. J Am Soc Hortic Sci 130:95–101

    CAS  Google Scholar 

  • Tsukuda S, Gomi K, Yamamoto H, Akimitsu K (2006) Characterization of cDNAs encoding two distinct miraculin-like proteins and stress-related modulation of the corresponding mRNAs in Citrus jambhiri Lush. Plant Mol Biol 60(1):125–136

    PubMed  CAS  Google Scholar 

  • Vardi A, Bleichman S, Aviv D (1990) Genetic transformation of citrus protoplasts and regeneration of transgenic plants. Plant Sci 69:199–206

    CAS  Google Scholar 

  • Wang ZC, Deng XX (2004) Cryopreservation of shoot-tips of Citrus using vitrification: effect of reduced form of glutathione. CryoLetters 25:43–50

    PubMed  Google Scholar 

  • Webber HJ (1967) History and development of the citrus industry. In: Reuther W, Webber HJ, Batchelor LD (eds) The citrus industry, vol 1. University of California Press, Berkley, CA, USA, pp 1–39

    Google Scholar 

  • Weber CA, Moore GA, Deng Z, Gmitter FG Jr (2003) Mapping freeze tolerance quantitative trait loci in a Citrus grandis × Poncirus trifoliata F1 pseudo-testcross using molecular markers. J Am Soc Hortic Sci 128:508–514

    CAS  Google Scholar 

  • Wong WS, Li GG, Ning W, Xu ZF, Hsiao WL, Zhang LY, Li N (2001) Repression of chilling-induced ACC accumulation in transgenic citrus by over-production of antisense 1-aminocyclopropane-1-carboxylate synthase RNA. Plant Sci 161:969–977

    CAS  Google Scholar 

  • Yamamoto M, Tominaga S (2003) High chromosomal variability of mandarins (Citrus spp.) revealed by CMA banding. Euphytica 129:267–274

    CAS  Google Scholar 

  • Yang Z, Ingelbrecht IL, Louzada E, Skaria M, Mirkov TE (2000) Agrobacterium-mediated transformation of the commercially important grapefruit cultivar Rio Red (Citrus paradidi Macf.). Plant Cell Rep 19:1203–1211

    CAS  Google Scholar 

  • Yang ZN, Ye XR, Choi S, Molina J, Moonan F, Wing RA, Roose ML, Mirkov TE (2001) Construction of a 1.2-Mb contig including the cistrus tristeza virus resistance gene locus using a bacterial artificial chromosome library of Poncirus trifoliata (L.) Raf. Genome 44:382–393

    PubMed  CAS  Google Scholar 

  • Yang ZN, Ye XR, Molina J, Roose ML, Mirkov TE (2003) Sequence analysis of a 282-kilobase region surrounding the citrus tristeza virus resistance gene (Ctv) locus in Poncirus trifoliata L. Raf. Plant Physiol 131:482–492

    PubMed  CAS  Google Scholar 

  • Yao J, Wu J, Gleave AP, Morris BAM (1996) Transformation of citrus embryogenic cells using particle bombardment and production of transgenic embryos. Plant Sci 113:175–183

    CAS  Google Scholar 

  • Zanek MC, Reyes CA, Cervera M, Pena EJ, Velazquez K, Costa N, Plata MI, Grau O, Pena L, Garcia ML (2008) Genetic transformation of sweet orange with the coat protein gene of Citrus psorosis virus and evaluation of resistance against the virus. Plant Cell Rep 27:57–66

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhugiri Nageswara Rao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rao, M.N., Soneji, J.R., Sahijram, L. (2011). Citrus. In: Kole, C. (eds) Wild Crop Relatives: Genomic and Breeding Resources. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20447-0_3

Download citation

Publish with us

Policies and ethics