Skip to main content

Geometric Generalisation of Surrogate Model Based Optimisation to Combinatorial Spaces

  • Conference paper
Evolutionary Computation in Combinatorial Optimization (EvoCOP 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6622))

Abstract

In continuous optimisation, Surrogate Models (SMs) are often indispensable components of optimisation algorithms aimed at tackling real-world problems whose candidate solutions are very expensive to evaluate. Because of the inherent spatial intuition behind these models, they are naturally suited to continuous problems but they do not seem applicable to combinatorial problems except for the special case when solutions are naturally encoded as integer vectors. In this paper, we show that SMs can be naturally generalised to encompass combinatorial spaces based in principle on any arbitrarily complex underlying solution representation by generalising their geometric interpretation from continuous to general metric spaces. As an initial illustrative example, we show how Radial Basis Function Networks (RBFNs) can be used successfully as surrogate models to optimise combinatorial problems defined on the Hamming space associated with binary strings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bajer, L., Holeňa, M.: Surrogate model for continuous and discrete genetic optimization based on RBF networks. In: Fyfe, C., Tino, P., Charles, D., Garcia-Osorio, C., Yin, H. (eds.) IDEAL 2010. LNCS, vol. 6283, pp. 251–258. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  2. Castillo, P., Mora, A., Merelo, J., Laredo, J., Moreto, M., Cazorla, F., Valero, M., McKee, S.: Architecture performance prediction using evolutionary artificial neural networks. In: Giacobini, M., Brabazon, A., Cagnoni, S., Di Caro, G.A., Drechsler, R., Ekárt, A., Esparcia-Alcázar, A.I., Farooq, M., Fink, A., McCormack, J., O’Neill, M., Romero, J., Rothlauf, F., Squillero, G., Uyar, A.Ş., Yang, S. (eds.) EvoWorkshops 2008. LNCS, vol. 4974, pp. 175–183. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Cressie, N.A.C.: Statistics for Spatial Data, revised edn. Wiley, Chichester (1993)

    MATH  Google Scholar 

  4. Jain, L.C.: Radial Basis Function Networks. Springer, Heidelberg (2001)

    Google Scholar 

  5. Jin, Y.: A comprehensive survey of fitness approximation in evolutionary computation. Soft Computing Journal 9(1), 3–12 (2005)

    Article  Google Scholar 

  6. Jones, D.R.: A taxonomy of global optimization methods based on response surfaces. Journal of Global Optimization 21(4), 345–383 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kauffman, S.: Origins of order: self-organization and selection in evolution. Oxford University Press, Oxford (1993)

    Google Scholar 

  8. Lew, T.L., Spencer, A.B., Scarpa, F., Worden, K., Rutherford, A., Hemez, F.: Identification of response surface models using genetic programming. Mechanical Systems and Signal Processing 20, 1819–1831 (2006)

    Article  Google Scholar 

  9. Mitchell, T.: Machine Learning. McGraw Hill, New York (1997)

    MATH  Google Scholar 

  10. Moraglio, A.: Towards a geometric unification of evolutionary algorithms. PhD thesis, University of Essex (2007)

    Google Scholar 

  11. Rasmusen, C.E., Williams, C.: Gaussian Processes for Machine Learning. The MIT Press, Cambridge (2006)

    Google Scholar 

  12. Tong, S., Gregory, B.: Turbine preliminary design using artificial intelligence and numerical optimization techniques. Journal of Turbomachinery 114, 1–10 (1992)

    Article  Google Scholar 

  13. Voutchkov, I., Keane, A., Bhaskar, A., Olsen, T.M.: Weld sequence optimization: the use of surrogate models for solving sequential combinatorial problems. Computer Methods in Applied Mechanics and Engineering 194, 3535–3551 (2005)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Moraglio, A., Kattan, A. (2011). Geometric Generalisation of Surrogate Model Based Optimisation to Combinatorial Spaces. In: Merz, P., Hao, JK. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2011. Lecture Notes in Computer Science, vol 6622. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20364-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20364-0_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20363-3

  • Online ISBN: 978-3-642-20364-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics