Skip to main content

Mechanisms of Fluorescent Pseudomonads That Mediate Biological Control of Phytopathogens and Plant Growth Promotion of Crop Plants

  • Chapter
  • First Online:
Bacteria in Agrobiology: Plant Growth Responses

Abstract

Plant pathogens cause persistent and significant yield losses in economically important crop plants. Incessant use of chemicals to control pathogens causes health problems and environmental pollution. Biological control agents are eco friendly and, therefore, have emerged as promising alternatives. Fluorescent pseudomonads, the ubiquitous soil bacteria, form a large group of plant growth-promoting rhizobacteria with plant growth-promoting and disease-suppressing attributes. They possess an array of innate beneficial traits such as successful root colonization, production of phytohormones, vitamins, lytic enzymes, antibiotics, and induction of systemic resistance in plants, thereby resulting in biological control of plant pathogens and enhancing plant growth and yield. Knowledge on the mechanisms that mediate beneficial attributes is important for the selection of potent biocontrol strains and for registration, patenting, recognition, and quality checking, which are essential not only for understanding their ecological role as biocontrol agents, but also for their biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbas A, Morrisey JP, Marquez PC, Sheehan MM, Delany IR, O’Gara F (2002) Characterization of interaction between the transcriptional repressor PhlF and its binding site at the phlA promoter in Pseudomonas fluorescens F113. J Bacteriol 184:3008–3016

    PubMed  CAS  Google Scholar 

  • Abd-Alla MH (1998) Growth and siderophore production in vitro of Bradyrhizobium (Lupin) strains under iron limitation. Eur J Soil Biol 34:99–104

    CAS  Google Scholar 

  • Acea ML, Alexander M (1988) Growth and survival of bacteria introduced into carbon amended soil. Soil Biol Biochem 20:703–709

    Google Scholar 

  • Anjaiah V, Koedam N, Nowak-Thompson B, Loper JE, Hofte M, Tambong JT, Cornelis P (1998) Involvement of phenazines and anthranilate in the antagonism of Pseudomonas aeruginosa PNA1 and Tn5 derivatives toward Fusarium spp. and Pythium spp. Mol Plant Microbe Interact 11:847–854

    CAS  Google Scholar 

  • Anjaiah V, Cornelis P, Koedam N (2003) Effect of genotype and root colonization in biological control of Fusarium wilts in pigeonpea and chickpea by Pseudomonas aeruginosa PNA1. Can J Microbiol 49:85–91

    PubMed  CAS  Google Scholar 

  • Arima K, Imanaka H, Kousaka M, Fukuda A, Tamura G (1964) Pyrrolnitrin, a new antibiotic substance produced by Pseudomonas. Agric Biol Chem 28:575–576

    CAS  Google Scholar 

  • Arrigoni O, De Gara L, Tommasi F, Liso R (1992) Changes in the ascorbate system during seed developments in Vicia faba L. Plant Physiol 59:235–238

    Google Scholar 

  • Ayyadurai N, Ravindra Naik P, Sreehari Rao M, Sunish Kumar R, Samrat SK, Manohar M, Sakthivel N (2006) Isolation and characterization of a novel banana rhizosphere bacterium as fungal antagonist and microbial adjuvant in micropropagation of banana. J Appl Microbiol 100:926–937

    PubMed  CAS  Google Scholar 

  • Ayyadurai N, Ravindra Naik P, Sakthivel N (2007) Functional characterization of antagonistic fluorescent pseudomonads associated with rhizospheric soil of rice (Oryza sativa L.). J Microbiol Biotechnol 17:919–927

    PubMed  CAS  Google Scholar 

  • Azaizeh A, Neumann G, Marschner H (1996) Effects of thiamine and nitrogen fertiliser form on the number of N2-fixing and total bacteria in the rhizosphere of maize plants. Z Pflanzenernahr Bodenkd 159:183–188

    CAS  Google Scholar 

  • Bagnasco P, De La Fuente L, Gaultieri G, Noya F, Arias A (1998) Fluorescent Pseudomonas spp. as biocontrol agents against forage legume root pathogenic fungi. Soil Biol Biochem 30:1317–1323

    CAS  Google Scholar 

  • Bahme JB, Schroth MN (1987) Spatial-temporal colonization patterns of a rhizobacterium on underground organs of potato. Phytopathology 77:1093–1100

    Google Scholar 

  • Bakker AW, Schippers B (1987) Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp. mediated plant growth stimulation. Soil Biol Biochem 19:451–457

    CAS  Google Scholar 

  • Bakker PAHM, Ran LX, Pieterse CMJ, van Loon LC (2003) Understanding the involvement of rhizobacteria-mediated induction of systemic resistance in biocontrol of plant diseases. Can J Plant Pathol 25:5–9

    Google Scholar 

  • Bakker PAHM, Pieterse CMJ, Van Loon LC (2007) Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology 97:239–243

    PubMed  Google Scholar 

  • Banerjee N, Langhe DE (1985) A tissue culture technique for rapid clonal propagation and storage under minimal growth conditions of Musa (banana and plantain). Plant Cell Rep 4:351–354

    CAS  Google Scholar 

  • Bangera MG, Thomashow LS (1996) Characterization of a genomic locus needed required for synthesis of the antibiotic 2,4-diacetylphloroglucinol by the biological control agent Pseudomonas fluorescens Q2-87. Mol Plant Microbe Interact 9:83–90

    PubMed  CAS  Google Scholar 

  • Bano N, Musarrat J (2003) Characterization of a new Pseudomonas aeruginosa strain NJ-15 as a potential biocontrol agent. Curr Microbiol 46:324–328

    PubMed  CAS  Google Scholar 

  • Barazani O, Friedman J (1999) Is IAA the major root growth factor secreted from plant-growth-mediating bacteria. J Chem Ecol 25:2397–2406

    CAS  Google Scholar 

  • Baron SS, Rowe JJ (1981) Antibiotic action of pyocyanin. Antimicrob Agents Chemother 20:814–820

    PubMed  CAS  Google Scholar 

  • Baron SS, Teranova G, Rowe JJ (1989) Molecular mechanism of the antimicrobial action of pyocyanin. Curr Microbiol 18:223–230

    CAS  Google Scholar 

  • Baron SS, Teranova G, Rowe JJ (1997) Molecular mechanism of the antimicrobial action of pyocyanin. Curr Microbiol 18:223–230

    Google Scholar 

  • Barrett EL, Solanes RE, Tang JS, Palleroni NJ (1986) Pseudomonas fluorescens biovar V. Its resolution into distinct component groups and the relationship of these groups to other P. fluorescens biovars to P. putida and to psychrophilic pseudomonads associated with food spoilage. J Gen Microbiol 132:2709–2721

    PubMed  CAS  Google Scholar 

  • Bartnicki-Garcia S, Lippman E (1973) Fungal cell wall composition. In: Laskin AL, Lechevaluer HL (eds) Handbook of microbiology. Chemical Rubber, Cleveland, pp 229–252

    Google Scholar 

  • Becker O, Cook RJ (1988) Role of siderophores in suppression of Pythium species and production of increased-growth response of wheat by fluorescent pseudomonads. Phytopathology 78:778–782

    CAS  Google Scholar 

  • Belimov AA, Safronova VI, Sergeyeva TA, Egorova TN, Matveyeva VA, Tsyganov VE, Borisov AY, Tikhonovich IA, Kluge C, Preisfeld A, Dietz KJ, Stepanok VV (2001) Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 47:642–652

    PubMed  CAS  Google Scholar 

  • Bennett I, Broom NJP, Cassels R, Elder JS, Masson ND, O’Hanlon PJ (1999) Synthesis and antibacterial properties of β-diketone acrylate bioisosteres of pseudomonic acid A. Bioorg Med Chem Lett 9:1847–1852

    PubMed  CAS  Google Scholar 

  • Bitter W, Marugg JD, De Weger LA, Tommassen J, Weisbeek PJ (1991) The ferric pseudobactin receptor PupA of Pseudomonas putida WCS358: homology to TonB dependent Escherichia coli receptors and specificity of the protein. Mol Microbiol 5:647–655

    PubMed  CAS  Google Scholar 

  • Budzikiewicz H (1993) Secondary metabolites from fluorescent pseudomonads. FEMS Microbiol Ecol 104:209–228

    CAS  Google Scholar 

  • Budzikiewicz H (1997) Siderophores of fluorescent pseudomonads. Z Naturforsch 52:713–720

    CAS  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (1998) A plant growth promoting bacterium that decreases nickel toxicity in seedlings. Appl Environ Microbiol 64:3663–3668

    PubMed  CAS  Google Scholar 

  • Burr T, Schroth MN, Suslow T (1978) Increased potato yields by treatment of seed pieces with specific strains of Pseudomonas fluorescens and P. putida. Phytopathology 68:1377–1383

    Google Scholar 

  • Buysens S, Heungens K, Poppe J, Hofte M (1996) Involvement of pyochelin and pyoverdine in suppression of Pythium-induced damping-off of tomato by Pseudomonas aeruginosa 7NSK2. Appl Environ Microbiol 62:865–871

    PubMed  CAS  Google Scholar 

  • Campbell R, Renwick A, Coe SKAM (1986) Antagonism and siderophore production by biocontrol agents, plant growth promoting organisms, and the general rhizosphere population. In: Swinburne TR (ed) Iron, siderophores and plant diseases. Plenum, New York, pp 179–188

    Google Scholar 

  • Carcanague DR (1997) Novel derivatives of pseudomonic acid. Bioorg Med Chem Lett 7:2805–2808

    CAS  Google Scholar 

  • Cartwright DK, Chilton WS, Benson DM (1995) Pyrrolnitrin and phenazine production by Pseudomonas cepacia, strain 5.5B, a biocontrol agent of Rhizoctonia solani. Appl Microbiol Biotechnol 43:211–216

    CAS  Google Scholar 

  • Castric PA (1981) The metabolism of hydrogen cyanide by bacteria. In: Vennesland B, Conn EE, Knowles CJ, Westley J, Wissing F (eds) Cyanide in biology. Academic, London, pp 233–261

    Google Scholar 

  • Castric P (1994) Influence of oxygen on the Pseudomonas aeruginosa hydrogen cyanide synthase. Curr Microbiol 29:19–21

    CAS  Google Scholar 

  • Cattelan AJ, Hartel PG, Fuhrmann FF (1999) Screening for plant growth promoting rhizobacteria to promote early soybean growth. Soil Sci Soc Am J 63:1670–1680

    CAS  Google Scholar 

  • Chet I (1987) Trichoderma-applications, mode of action and potential as a biocontrol agent of soilborne plant pathogenic fungi. In: Chet I (ed) Innovative approaches to plant diseases. Wiley, New York, pp 137–160

    Google Scholar 

  • Chin-A-Woeng TFC, Bloemberg GV, Van der Bij AJ, Van der Drift KMGM, Schripse-ma J, Kroon B, Scheffer RJ, Keel C, Bakker PAHM, Tichy H, de Bruijn FJ, Thomas-Oates JE, Lugtenberg BJJ (1998) Biocontrol by phenazine-1-carboxamide producing Pseudomonas chlororaphis PCL1391 of tomato root rot caused by Fusarium oxysporum f. sp. radicis-lycopersici. Mol Plant Microbe Interact 11:1069–1077

    CAS  Google Scholar 

  • Cox CD, Rinehart KL Jr, Moore ML, Cook JC Jr (1981) Pyochelin: novel structure of an iron-chelating growth promoter for Pseudomonas aeruginosa. Proc Natl Acad Sci USA 78:4256–4260

    PubMed  CAS  Google Scholar 

  • Cronin D, Moenne-Loccoz Y, Fenton A, Dunne C, Dowling DN, O’Gara F (1997) Role of 2,4-diacetylphloroglucinol in the interaction of the biocontrol pseudomonad strain F113 with the potato cyst nematode Globodera rostochiensis. Appl Environ Microbiol 63:1357–1361

    PubMed  CAS  Google Scholar 

  • Dahm H, Rozycki H, Strzelczyk E, Li CY (1993) Production of B-group vitamins by Azospirillum spp. grown in media of different pH at different temperatures. Zentralbl Mikrobiol 148:195–203

    PubMed  CAS  Google Scholar 

  • de Bruijn I, de Kock MJD, de Waard P, van Beek TA, Raaijmakers JM (2008) Massetolide A biosynthesis in Pseudomonas fluorescens. J Bacteriol 190:2777–2789

    PubMed  Google Scholar 

  • De Freitas JR, Germida JJ (1991) Psuedomonas cepacia and Pseudomonas putida as winter wheat inoculants for biocontrol of Rhizoctania solani. Can J Microbiol 37:780–784

    Google Scholar 

  • De Freitas JR, Gupta VVSR, Germida JJ (1993) Influence of Pseudomonas syringae R25 and Pseudomonas putida R105 on the growth and nitrogen fixation (acetylene reduction activity) of pea (Pisum sativum L.) and field bean (Phaseolus vulgaris L.). Biol Fert Soils 16:215–220

    Google Scholar 

  • De Gara L, Paciolia C, Liso P, Stefani A, Blanco A, Arrigoni O (1993) Ascorbate metabolism in mature pollen grains of Daspyprum villosum (L.) Brob. during imbibitions. J Plant Physiol 141:504–509

    Google Scholar 

  • De Meyer G, Hofte M (1997) Salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 induces resistance to leaf infection by Botrytis cinerea on bean. Phytopathology 87:588–593

    PubMed  Google Scholar 

  • de Weger LA, Lugtenberg BJJ (1990) Plant growth stimulating rhizobacteria. In: Heslot H, Davies J, Florent T, Bobichon L, Durand G, Penasse L (eds) Proceedings of the 6th international symposium on genetics of industrial microorganisms, vol 2. Societe Frangaise de Microbiologie, Paris, pp 827–837

    Google Scholar 

  • de Weger LA, Van Boxtel R, van der Burg B, Gruters RA, Geels FP, Schippers B, Lugtenberg B (1986) Siderophores and outer membrane proteins of antagonistic, plant growth stimulating root-colonizing Pseudomonas spp. J Bacteriol 165:585–594

    PubMed  Google Scholar 

  • de Weger LA, van der Vlught CIM, WijOes AHM, Bakker PAHMB, Schippers B, Lugtenberg B (1987) Flagella of a plant-growth-stimulating Pseudomonas fluorescens strain are required for colonization of potato roots. J Bacteriol 169:2769–2773

    PubMed  Google Scholar 

  • de Weger LA, Dekkers LC, van der Bij AJ, Lugtenberg BJJ (1994) Use of phosphate-reporter bacteria to study phosphate limitation in the rhizosphere and in bulk soil. Mol Plant Microbe Interact 7:32–38

    Google Scholar 

  • Defago G, Berling CH, Burger U, Haas D, Kahr G, Keel C, Voisard C, Wirthner P, Wuthrich B (1990) Suppression of black root rot of tobacco and other root diseases by strains of Pseudomonas fluorescens: potential applications and mechanisms. In: Hornby D, Cook RJ, Henis Y, Ko WH, Rovira AD, Schippers B, Scott PR (eds) Biological control of soil-borne plant pathogens. CAB International, Oxon, UK, pp 93–108

    Google Scholar 

  • Dekkers LC, van der Bij AJ, Mulders IHM, Phoelich CC, Wentwoord RAR, Glandorf DCM, Wijffelman CA, Lugtenberg BJJ (1998) Role of the O-antigen of lipopolysaccharide, and possible roles of growth rate and NADH: ubiquinone oxidoreductase (nuo) in competitive tomato root-tip colonization by Pseudomonas fluorescens WCS365. Mol Plant Microbe Interact 11:763–771

    PubMed  CAS  Google Scholar 

  • Demange P, Wendenbaum S, Linget C, Bateman A, MacLeod J, Dell A, Albrecht AM, Abdallah MA (1987) Bacterial siderophores: structures and physicochemical properties of pyoverdines and related compounds. In: Winkelmann G, van der Helm D, Neilands JB (eds) Iron transport in microbes, plants and animals. VCH, Weinheim, pp 189–205

    Google Scholar 

  • DeryÅ‚o M, Skorupska A (1993) Enhancement of symbiotic nitrogen fixation by vitamin-secreting fluorescent Pseudomonas. Plant Soil 154:211–217

    Google Scholar 

  • Dow M, Newman MA, Roepenack E (2000) The induction and modulation of plant defense responses by bacterial lipopolysaccharides. Annu Rev Phytopathol 38:241–261

    PubMed  CAS  Google Scholar 

  • Dowling DN, O’Gara F (1994) Metabolites of Pseudomonas involved in the biocontrol of plant disease. Trends Biotechnol 12:133–141

    CAS  Google Scholar 

  • Duffy BK, Defago G (1997) Zinc improves biocontrol of Fusarium crown and root rot of tomato by Pseudomonas fluorescens and represses the production of pathogen metabolites inhibitory to bacterial antibiotic biosynthesis. Phytopathology 87:1250–1257

    PubMed  CAS  Google Scholar 

  • Duffy BK, Defago G (1999) Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Appl Environ Microbiol 65:2429–2438

    PubMed  CAS  Google Scholar 

  • Duffy BK, Keel C, Defago G (2004) Potential role of pathogen signaling in multitrophic plant–microbe interactions involved in disease protection. Appl Environ Microbiol 70:1836–1842

    PubMed  CAS  Google Scholar 

  • Dwivedi D, Johri BN (2003) Antifungals from fluorescent pseudomonads: biosynthesis and regulation. Curr Sci 85:1693–1703

    CAS  Google Scholar 

  • Elad Y, Baker R (1985) Influence of trace amounts of cations and siderophore-producing pseudomonads on chlamydospore germination of Fusarium oxysporum. Ecol Epidemiol 75:1047–1052

    CAS  Google Scholar 

  • Elad Y, Chet I (1987) Possible role of competition for nutrients in biocontrol of Pythium damping off by bacteria. Phytopathology 77:190–195

    Google Scholar 

  • Elander RP, Mabe JA, Hamill RH, Gorman M (1968) Metabolism of tryptophans by Pseudomonas aureofaciensVI. Production of pyrrolnitrin by selected Pseudomonas species. Appl Microbiol 16:753–758

    PubMed  CAS  Google Scholar 

  • Ellis RJ, Timms-Wilson TM, Bailey MJ (2000) Identification of conserved traits in fluorescent pseudomonads with antifungal activity. Environ Microbiol 2:274–284

    PubMed  CAS  Google Scholar 

  • El-Sayed AK, Hothersall J, Cooper SM, Stephens E, Simpson TJ, Thomas CM (2003) Characterization of the mupirocin biosynthesis gene cluster from Pseudomonas fluorescens NCIMB 10586. Chem Biol 10:410–430

    Google Scholar 

  • Fenton AM, Stephens PM, Crowley J, O’Callaghen M, O’Gara F (1992) Exploitation of gene(s) involved in 2,4-diacetylphloroglucinol biosynthesis to confer a new biocontrol capability to a Pseudomonas strain. Appl Environ Microbiol 58:3873–3878

    PubMed  CAS  Google Scholar 

  • Flaishman M, Eyal Z, Voisard C, Haas D (1990) Suppression of Septoria tritici by phenazine or siderophore deficient mutants of Pseudomonas. Curr Microbiol 20:121–124

    CAS  Google Scholar 

  • Foster RC (1988) Microenvironments of soil microorganisms. Biol Fert Soils 6:189–203

    Google Scholar 

  • Fridlender M, Inbar J, Chet I (1993) Biological control of soilborne plant pathogens by a b-1,3 glucanase-producing Pseudomonas cepacia. Soil Biol Biochem 25: 1121–1221

    Google Scholar 

  • Fujita M, Tanaka K, Takahashi H, Amemura A (1994) Transcription of the principal sigma-factor genes, rpoD and rpoS, in Pseudomonas aeruginosa is controlled according to the growth phase. Mol Microbiol 13:1071–1077

    PubMed  CAS  Google Scholar 

  • Funaki M, Tsuchiya F, Maeda K, Kamiya T (1958) Cyanomycin, a new antibiotic. J Antibiot Ser A 11:143–149

    CAS  Google Scholar 

  • Galli E, Barbieri P, Bestetti G (1992) Potential of pseudomonads in the degradation of methylbenzenes. In: Galli E, Silver S, Withold B (eds) Pseudomonas: molecular biology and biotechnology. American Society for Microbiology, Washington, DC, pp 268–276

    Google Scholar 

  • Gamble TN, Betlach MR, Tiedje JM (1977) Numerically dominant denitrifying bacteria from world soils. Appl Environ Microbiol 33:926–939

    PubMed  CAS  Google Scholar 

  • Garcia de Salamone IE, Hynes RK, Nelson LM (2001) Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Can J Microbiol 47:404–411

    PubMed  CAS  Google Scholar 

  • Gaur AC (1990) Phosphate solubilizing microorganisms as bio-fertilizers. Omega Scientific Publication, New Delhi

    Google Scholar 

  • Ghiglione JF, Gourbiere F, Potier P, Philippot L, Lensi R (2000) Role of respiratory nitrate reductase in ability of Pseudomonas fluorescens YT101 to colonize the rhizosphere of maize. Appl Environ Microbiol 66:4012–4016

    PubMed  CAS  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free living bacteria. Can J Microbiol 41:109–117

    CAS  Google Scholar 

  • Glick BR, Jacobson CB, Schwarze MMK, Pasternak JJ (1994) 1-Aminocyclopropane-1-carboxylic acid deaminase mutants of the plant growth promoting rhizobacterium Pseudomonas putida GR12-2 do not stimulate canola root elongation. Can J Microbiol 40:911–915

    CAS  Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth promoting bacteria. J Theor Biol 190:63–68

    PubMed  CAS  Google Scholar 

  • Glick BR, Patten CL, Holguin G, Penrose DM (1999) Biochemical and genetic mechanisms used by plant growth promoting bacteria. Imperial College Press, London

    Google Scholar 

  • Gomez-Gomez L, Boller T (2000) FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5:1003–1011

    PubMed  CAS  Google Scholar 

  • Grichko VP, Glick BR (2001) Amelioration of flooding stress by ACC deaminase containing plant growth promoting bacteria. Plant Physiol Biochem 39:11–17

    CAS  Google Scholar 

  • Grimes HD, Mount MS (1987) Influence of Pseudomonas putida on nodulation of Phaseolus vulgaris. Soil Biol Biochem 6:27–30

    Google Scholar 

  • Gurusiddaiah S, Weller DM, Sarkar A, Cook RJ (1986) Characterization of an antibiotic produced by a strain of Pseudomonas fluorescens inhibitory to Gaeumannomyces graminis var. tritici and Pythium spp. Antimicrob Agents Chemother 29:488–495

    PubMed  CAS  Google Scholar 

  • Gutterson N, Ziegle JS, Warren GJ, Layton TJ (1988) Genetic determinants for the catabolite induction of antibiotic biosynthesis in Pseudomonas fluorescens HV37a. J Bacteriol 170:380–385

    PubMed  CAS  Google Scholar 

  • Hamdan H, Weller DM, Thomashow LS (1991) Relative importance of fluorescent siderophores and other factors in biological control of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens 2-79 and M4-80R. Appl Environ Microbiol 57:3270–3277

    PubMed  CAS  Google Scholar 

  • Harrison LA, Letrendre L, Kovacevich P, Pierson EA, Weller DM (1993) Purification of an antibiotic effective against Geumannomyces graminis var. tritici produced by a biocontrol agent, Pseudomonas aureofaciens. Soil Biol Biochem 25:215–221

    CAS  Google Scholar 

  • Hassan HM, Fridovich I (1980) Mechanism of the antibiotic action of pyocyanine. J Bacteriol 141:156–163

    PubMed  CAS  Google Scholar 

  • Hattori T (1988) Soil aggregates as microhabitats of microorganisms. Rep Inst Agric Res Tohoku Univ 37:23–36

    Google Scholar 

  • Hernandez JM, Laberry R, Lozano JC (1986) Observation on the effect of inoculating cassava (Manihot esculenta) plantlets with fluorescent pseudomonads. Phytopathology 117:17–25

    Google Scholar 

  • Hoffland E, Hakulinen J, van Pelt JA (1996) Comparison of systemic resistance induced by avirulent and nonpathogenic Pseudomonas species. Phytopathology 86:757–762

    Google Scholar 

  • Homma Y, Suzui T (1989) Role of antibiotic production in suppression of radish damping-off by seed bacterization with Pseudomonas cepacia. Ann Phytopathol Soc Jpn 55:643–652

    CAS  Google Scholar 

  • Howell CR, Stipanovic RD (1979) Control of Rhizoctonia solani on cotton seedlings with Pseudomonas fluorescens with an antibiotic produced by the bacterium. Phytopathology 69:480–482

    CAS  Google Scholar 

  • Howell CR, Stipanovic RD (1980) Suppression of Pythium ultimum induced damping off cotton seedlings by Pseudomonas fluorescens and its antibiotic pyoluteorin. Phytopathology 70:712–715

    CAS  Google Scholar 

  • Inbar J, Chet I (1991) Evidence that chitinase produced by Aeromonas caviae is involved in the biological control of soil-borne plant pathogens by this bacteria. Soil Biol Biochem 23:973–978

    CAS  Google Scholar 

  • Iswandi A, Bossier P, Vandenabeele J, Verstraete W (1987) Effect of seed inoculation with the rhizopseudomonas strain 7NSK2 on the root microflora of maize (Zea mays) and barley (Hordeum vulgare). Biol Fert Soils 3:153–158

    Google Scholar 

  • Jackson MB (1993) Are plant hormones involved in root to shoot communication. Adv Bot Res 19:103–187

    CAS  Google Scholar 

  • James DW, Gutterson NI (1986) Multiple antibiotics produced by Pseudomonas fluorescens HV37a and their differential regulation by glucose. Appl Environ Microbiol 52:1183–1189

    PubMed  CAS  Google Scholar 

  • Jamisiewicz W, Yourman L, Roitman J, Mahoney N (1991) Postharvest control of blue mold and grey mold of apples and pears by dip treatment with pyrrolnitrin, a metabolite of Pseudomonas cepacia. Plant Dis 75:490–494

    Google Scholar 

  • Jha BK, Pragash MG, Cletus J, Raman G, Sakthivel N (2009) Simultaneous phosphate solubilization potential and antifungal activity of new fluorescent pseudomonad strains, Pseudomonas aeruginosa, P. plecoglossicida and P. mosselii. World J Microbiol Biotechnol 25:573–581

    CAS  Google Scholar 

  • Katz E, Demain AL (1977) The peptide antibiotic of Bacillus: chemistry, biogenesis and possible functions. Bacteriol Rev 41:449–474

    PubMed  CAS  Google Scholar 

  • Katznelson H, Bose B (1959) Metabolic activity and phosphate-dissolving capability of bacterial isolates from wheat roots, rhizosphere, and nonrhizosphere soil. Can J Microbiol 5:79–85

    PubMed  CAS  Google Scholar 

  • Keel C, Wirthner P, Oberhansli T, Voisard C, Burger U, Haas D, Defago G (1990) Pseudomonads as antagonists of plant pathogens in the rhizosphere: role of the antibiotic 2,4-diacetylphloroglucinol in the suppression of black root rot of tobacco. Symbiosis 9:327–341

    CAS  Google Scholar 

  • Keel C, Schnider U, Maurhofer M, Voisard C, Laville J, Burger P, Wirthner P, Haas D, Defago G (1992) Suppression of root diseases by Pseudomonas fluorescens CHA0: importance of the bacterial secondary metabolite, 2,4-diacetylphloroglucinol. Mol Plant Microbe Interact 5:4–13

    CAS  Google Scholar 

  • Kim HY, Schlictman D, Shankar S, Xie Z, Chakrabarty AM, Kornberg A (1998) Alginate, inorganic polyphosphate, GTP and ppGpp synthesis co-regulated in Pseudomonas aeruginosa: implications for stationary phase survival and synthesis of RNA/DNA precursors. Mol Microbiol 27:717–725

    PubMed  CAS  Google Scholar 

  • Kirner S, Hammer PE, Hill DS, Altmann A, Fischer I, Weislo LJ, Lanahan M, van Pee KH, Ligon JM (1998) Functions encoded by pyrrolnitrin biosynthetic genes from Pseudomonas fluorescens. J Bacteriol 180:1939–1943

    PubMed  CAS  Google Scholar 

  • Kleinkauf H, von Dohren H (1990) Nonribosomal biosynthesis of peptide antibiotics. Eur J Biochem 192:1–15

    PubMed  CAS  Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth promoting rhizobacteria on radishes. Proceeding of the fourth international conference on plant pathogenic bacteria, Institut national de la researche agronomique, Angers, France, pp 879–882

    Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Pseudomonas siderophores: a mechanism explaining disease suppressive soils. Curr Microbiol 4:317–320

    CAS  Google Scholar 

  • Kloepper JW, Zablotowicz RM, Tipping EM, Lifshitz R (1991) Plant growth promotion mediated by bacterial rhizosphere colonizers. In: Keister DL, Cregan PB (eds) The rhizosphere and plant growth. Kluwer Academic, Dordrecht, The Netherlands, pp 315–326

    Google Scholar 

  • Kloepper JW, Tuzun S, Liu L, Wei G (1993) Plant growth-promoting rhizobacteria as inducers of systemic disease resistance. In: Lumsden RD, Vaughn JL (eds) Pest management: biologically based technologies. American Chemical Society Books, Washington, DC, pp 156–165

    Google Scholar 

  • Kraus J, Loper JE (1995) Characterization of a genomic region required for production of the antibiotic pyoluteorin by the biological control agent Pseudomonas fluorescens Pf-5. Appl Environ Microbiol 61:849–854

    PubMed  CAS  Google Scholar 

  • Lam ST (1990) Microbial attributes associated with root colonization. In: Baker RR, Dunn PE (eds) New directions in biological control: alternatives for suppressing agricultural pests and diseases. Alan R Liss Inc., New York, pp 767–778

    Google Scholar 

  • Lamont IL, Martin LW (2003) Identification and characterization of novel pyoverdine synthesis genes in Pseudomonas aeruginosa. Microbiology 149:833–842

    PubMed  CAS  Google Scholar 

  • Leeman M, Van Pelt JA, Den Ouden FM, Heinsbroek M, Bakker PAHM, Schippers B (1995a) Induction of systemic resistance by Pseudomonas fluorescens in radish cultivars differing in susceptibility to Fusarium wilt, using a novel bioassay. Eur J Plant Pathol 101:655–664

    Google Scholar 

  • Leeman M, Van Pelt JA, Den Ouden FM, Heinsbroek M, Bakker PAHM, Schippers B (1995b) Induction of systemic resistance against Fusarium wilt of radish by lipopolysaccharides of Pseudomonas fluorescens. Phytopathology 85:1021–1027

    CAS  Google Scholar 

  • Leeman M, den Ouden FM, van Pelt JA, Dirkx FPM, Steijl H, Bakker PAHM, Schippers B (1996) Iron availability affects induction of systemic resistance to Fusarium wilt of radish by Pseudomonas fluorescens. Phytopathology 86:149–155

    CAS  Google Scholar 

  • Leisinger T, Margraff R (1979) Secondary metabolites of fluorescent pseudomonads. Microbiol Rev 43:422–442

    PubMed  CAS  Google Scholar 

  • Levy E, Gough FJ, Berlin DK, Guiana PW, Smith JT (1992) Inhibition of Septoria tritici and other phytopathogenic fungi and bacteria by Pseudomonas fluorescens and its antibiotics. Plant Pathol 41:335–341

    CAS  Google Scholar 

  • Lewis TA, Cortese MS, Sebat JL, Green TL, Lee CH, Crawford RL (2000) A Pseudomonas stutzeri gene cluster encoding biosynthesis of the CCl4-dechlorination agent pyridine-2,6-bis (thiocarboxylic acid). Environ Microbiol 2:407–416

    PubMed  CAS  Google Scholar 

  • Lifshitz R, Kloepper JW, Kozlowski M, Simonson C, Carlson J, Tipping EM, Zaleska I (1987) Growth promotion of canola (rapeseed) seedlings by a strain of Pseudomonas putida under gnotobiotic conditions. Can J Microbiol 33:390–395

    Google Scholar 

  • Ligon JM, Hill DS, Hammer PE, Torkewitz NR, Hofmann D, Kempf HJ, van Pee KH (2000) Natural products with antifungal activity from Pseudomonas biocontrol bacteria. Pest Manage Sci 56:688–695

    CAS  Google Scholar 

  • Lim HS, Kim YS, Kim SD (1991) Pseudomonas stutzeri YPL-1 genetic transformation and antifungal mechanisms against Fusarium solani, and agent of plant root rot. Appl Environ Microbiol 57:510–516

    PubMed  CAS  Google Scholar 

  • Liu L, Kloepper JW, Tuzun S (1995a) Induction of systemic resistance in cucumber against Fusarium wilt by plant growth promoting rhizobacteria. Phytopathology 85:695–698

    Google Scholar 

  • Liu L, Kloepper JW, Tuzun S (1995b) Induction of systemic resistance in cucumber against angular leaf spot by plant growth promoting rhizobacteria. Phytopathology 85:843–847

    Google Scholar 

  • Loper JE (1988) Role of fluorescent siderophore production in biological control of Pythium ultimum by a Pseudomonas fluorescens strain. Phytopathology 78:166–172

    CAS  Google Scholar 

  • Loper JE, Haack C, Schroth MN (1985) Population dynamics of soil pseudomonads in the rhizosphere of potato (Solanum tuberosum L.). Appl Environ Microbiol 49:416–422

    PubMed  CAS  Google Scholar 

  • Loper JE, Henkels MD, Shaffer BT, Valeriote FA, Gross H (2008) Isolation and identification of rhizoxin analogs from Pseudomonas fluorescens Pf-5 by using a genomic mining strategy. Appl Environ Microbiol 74:3085–3093

    PubMed  CAS  Google Scholar 

  • Lorito M, Woo SL, Ambrosio MD, Harman GE, Hayes CK, Kubicek CP, Scala F (1996) Synergistic interaction between cell wall degrading enzymes and membrane affecting compounds. Mol Plant Microbe Interact 9:206–213

    CAS  Google Scholar 

  • Lugtenberg BJJ, Dekkers LC (1999) What makes Pseudomonas bacteria rhizosphere competent? Environ Microbiol 1:9–13

    PubMed  CAS  Google Scholar 

  • Lugtenberg BJJ, Kravchenko LV, Simons M (1999) Tomato seed and root exudate sugars: composition, utilization by Pseudomonas biocontrol strains and role in rhizosphere colonization. Environ Microbiol 1:439–446

    PubMed  CAS  Google Scholar 

  • Mansfield JW (1983) Antimicrobial compounds. In: Callowl JA (ed) Biochemical plant pathology. Wiley, Chichester, UK, pp 237–265

    Google Scholar 

  • Marek-Kozaczuk M, Skorupska A (2001) Production of B-group vitamins by plant growth-promoting Pseudomonas fluorescens strain 267 and the importance of vitamins in the colonization and nodulation of red clover. Biol Fert Soils 33:146–151

    CAS  Google Scholar 

  • Marek-Kozaczuk M, DeryÅ‚o M, Skorupska A (1996) Tn5 insertion mutants of Pseudomonas sp. 267 defective in siderophore production and their effect on clover (Trifolium pratense) nodulated with Rhizobium leguminosarum bv. trifolii. Plant Soil 179:269–274

    CAS  Google Scholar 

  • Martin FN, Loper JE (1999) Soilborne plant diseases caused by Pythium spp.: ecology, epidemiology, and prospects for biological control. Crit Rev Plant Sci 18:111–181

    CAS  Google Scholar 

  • Matthijs S, Abbaspour Tehrani K, Laus G, Jackson RW, Cooper RM, Cornelis P (2007) Thioquinolobactin, a Pseudomonas siderophore with antifungal and anti-Pythium activity. Environ Microbiol 9:425–434

    PubMed  CAS  Google Scholar 

  • Matthijs S, Budzikiewicz H, Schafer M, Wathelet B, Cornelis B (2008) Ornicorrugatin, a new siderophore from Pseudomonas fluorescens AF76. Z Naturforsch 63:8–12

    CAS  Google Scholar 

  • Maurhofer M, Keel C, Schnider U, Viosard C, Haas D, Defago G (1992) Influence of enhanced antibiotic production in Pseudomonas fluorescens strain CHA0 on its disease suppressive capacity. Phytopathology 82:190–195

    CAS  Google Scholar 

  • Maurhofer M, Hase C, Meuwly P, Metraux JP, Defago G (1994a) Induction of systemic resistance of tobacco mosaic virus by the root colonizing Pseudomonas fluorescens strain CHA0: influence of the gacA gene of pyoverdine production. Phytopathology 84:139–146

    CAS  Google Scholar 

  • Maurhofer M, Keel C, Haas D, Defago G (1994b) Pyoluteorin production by Pseudomonas fluorescens strain CHA0 is involved in the suppression of Pythium damping-off of cress but not cucumber. Eur J Plant Pathol 100:221–232

    CAS  Google Scholar 

  • Maurhofer M, Reimmann C, Schimidli-Sacherer P, Heeb S, Hass D, Defago G (1998) Salicilic acid biosynthetic genes expressed in Pseudomonas fluorescens strain P3 improve the induction of systemic resistance in tobacco against tobacco necrosis virus. Phytopathology 88:678–684

    PubMed  CAS  Google Scholar 

  • Mavrodi DV, Bonsall RF, Delaney SM, Soule MJ, Phillips G, Thomashow LS (2001) Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. J Bacteriol 183:6454–6465

    PubMed  CAS  Google Scholar 

  • Mazzola M, Cook RJ, Thomashow LS, Weller DM, Pierson LS (1992) Contribution of phenazine antibiotic biosynthesis to the ecological competence of fluorescent pseudomonads in soil habitats. Appl Environ Microbiol 58:2616–2624

    PubMed  CAS  Google Scholar 

  • Mercado-Blanco J, Van der Drift KMGM, Olsson P, Thomas Oates JE, van Loon LC, Bakker PAHM (2001) Analysis of the pmsCEAB gene cluster involved in biosynthesis of salicylic acid and the siderophore pseudomonine in the biocontrol strain Pseudomonas fluorescens WCS374. J Bacteriol 183:1909–1920

    PubMed  CAS  Google Scholar 

  • Mew TW, Rossales AM (1986) Bacterization of rice plants for control of sheath blight caused by Rhizoctonia solani. Phytopathology 76:1260–1264

    Google Scholar 

  • Meyer JM (2000) Pyoverdines: pigments, siderophores and potential taxonomic markers of fluorescent Pseudomonas species. Arch Microbiol 174:135–142

    Google Scholar 

  • Meyer JM, Geoffroy VA, Baida N, Gardan L, Izard D, Lemanceau P, Achouak W, Palleroni NJ (2002) Siderophore typing, a powerful tool for the identification of fluorescent and nonfluorescent pseudomonads. Appl Environ Microbiol 68:2745–2753

    PubMed  CAS  Google Scholar 

  • Meziane H, Van der Sluis I, Van Loon LC, Hofte M, Bakker PAHM (2005) Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants. Mol Plant Pathol 6:177–185

    PubMed  Google Scholar 

  • Mossialos D, Meyer JM, Budzikiewicz H, Wolff U, Koedam N, Baysse C (2000) Quinolobactin, a new siderophore of Pseudomonas fluorescens ATCC 17400 whose production is repressed by the cognate pyoverdine. Appl Environ Microbiol 66:487–492

    PubMed  CAS  Google Scholar 

  • Mozafar A, Oertli JJ (1993) Thiamin (vitamin B1): translocation and metabolism by soybean seedling. J Plant Physiol 142:438–445

    CAS  Google Scholar 

  • Natsch A, Keel C, Pfirter HA, Haas D, Defago G (1994) Contribution of the global regulator gene gacA to persistence and dissemination of Pseudomonas fluorescens biocontrol strain CHAO introduced into soil microcosm. Appl Environ Microbiol 60:2553–2560

    PubMed  CAS  Google Scholar 

  • Neilands JB (1981) Microbial iron compounds. Annu Rev Biochem 50:715–731

    PubMed  CAS  Google Scholar 

  • Neilands JB, Leong SA (1986) Siderophores in relation to plant disease. Annu Rev Plant Physiol 37:187–208

    CAS  Google Scholar 

  • Nielsen MN, Sorensen J (1999) Chitinolytic activity of Pseudomonas fluorescens isolates from barely and sugar beet rhizosphere. FEMS Microbiol Ecol 30:217–227

    Google Scholar 

  • Nielsen MN, Sorensen J, Fels J, Pedersen HC (1998) Secondary metabolite and endochitinase dependent antagonism toward plant-pathogenic microfungi of Pseudomonas fluorescens isolates from sugar beet rhizosphere. Appl Environ Microbiol 64:3563–3569

    PubMed  CAS  Google Scholar 

  • Nielsen TH, Christophersen C, Anthoni U, Sorensen J (1999) Viscosinamide, a new cyclic depsipeptide with surfactant and antifungal properties produced by Pseudomonas fluorescens DR54. J Appl Microbiol 86:80–90

    Google Scholar 

  • Nielsen TH, Thrane C, Christophersen C, Anthoni U, Sørensen J (2000) Structure, production characteristics and fungal antagonism of tensin – a new antifungal cyclic lipopeptide from Pseudomonas fluorescens strain 96.578. J Appl Microbiol 89:992–1001

    PubMed  CAS  Google Scholar 

  • Nielsen TH, Sorensen D, Tobiasen C, Andersen JB, Christophersen C, Givskov M, Sorensen J (2002) Antibiotic and biosurfactant properties of cyclic lipopeptides produced by fluorescent Pseudomonas spp. from the sugar beet rhizosphere. Appl Environ Microbiol 68:3416–3423

    PubMed  CAS  Google Scholar 

  • Nowak-Thompson B, Gould SJ, Kraus J, Loper JE (1994) Production of 2,4-diacetylphloroglucinol by the biocontrol agent Pseudomonas fluorescens Pf 5. Can J Microbiol 40:1064–1066

    CAS  Google Scholar 

  • Nowak-Thompson B, Gould SJ, Loper JE (1997) Identification and sequence analysis of the genes encoding a polyketide synthase required for pyoluteorin biosynthesis in Pseudomonas fluorescens Pf-5. Gene 204:17–24

    PubMed  CAS  Google Scholar 

  • O’Sullivan DJ, O’Gara F (1992) Traits of Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol Rev 56:662–676

    PubMed  Google Scholar 

  • Oertli JJ (1987) Exogenous application of vitamins as regulators for growth and development of plants – a review. Z Pflanzenernahr Bodenkd 150:375–391

    CAS  Google Scholar 

  • Ordentlich A, Elad Y, Chet I (1988) The role of chitinase of Serratia marcescens for biocontrol of Sclerotium rolfsii. Phytopathology 78:84–88

    CAS  Google Scholar 

  • Palleroni NJ (1975) General properties and taxonomy of the genus Pseudomonas. In: Clarke PH, Richmond MH (eds) Genetics and biochemistry of Pseudomonas. Wiley, Baltimore, USA, pp 1–36

    Google Scholar 

  • Palleroni NJ, Doudoroff M (1972) Some properties and taxonomic subdivisions of the genus Pseudomonas. Annu Rev Phytopathol 10:73–100

    Google Scholar 

  • Palleroni N, Kunisawa R, Contopoulou R, Doudoroff M (1973) Nucleic acid homologies in the genus Pseudomonas. Int J Syst Bacteriol 23:333–339

    CAS  Google Scholar 

  • Patten CL, Glick BR (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801

    PubMed  CAS  Google Scholar 

  • Penrose DM, Glick BR (2003) Methods for isolating and characterizing ACC deaminase containing plant growth promoting rhizobacteria. Physiol Plant 118:10–15

    PubMed  CAS  Google Scholar 

  • Pfender WF, Kraus J, Loper JE (1993) A genomic region from Pseudomonas fluorescens Pf-5 required for pyrrolnitrin production and inhibition of Pyrenophora tritici-repentis in wheat straw. Phytopathology 83:1223–1228

    CAS  Google Scholar 

  • Philippot L, Clays-Josserand A, Lensi R (1995) Use of Tn5 mutants to assess the role of dissimilatory nitrite reductase in the competitive abilities of two Pseudomonas strains in soil. Appl Environ Microbiol 61:1426–1430

    PubMed  CAS  Google Scholar 

  • Picard C, Di Cello F, Ventura M, Fani R, Guckert A (2000) Frequency and biodiversity of 2,4-diacetylphloroglucinol-producing bacteria isolated from the maize rhizosphere at different stages of plant growth. Appl Environ Microbiol 66:948–955

    PubMed  CAS  Google Scholar 

  • Pierson LS, Thomashow LS (1992) Cloning of heterologous expression of phenazine biosynthesis locus from Pseudomonas aureofaciens 30–84. Mol Plant Microbe Interact 53:330–339

    Google Scholar 

  • Pierson EA, Weller DM (1994) Use of mixtures of fluorescent pseudomonads to suppress take-all and improve the growth of wheat. Phytopathology 84:940–947

    Google Scholar 

  • Pieterse CMJ, Van Wees SCM, Hoffland E, Van Pelt JA, Van Loon LC (1996) Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid and pathogenesis related gene expression. Plant Cell 8:1225–1237

    PubMed  CAS  Google Scholar 

  • Pieterse CMJ, Van Pelt JA, Van Wees J, Ton SCM, Leon-Kloosterziel KM, Keurentijes JJB, Verhagen BWM, van Knoester M, Bakker PAHM, Van Loon LC (2001) Rhizobacteria-mediated induced systemic resistance trigging, signaling and expression. Eur J Plant Pathol 107:51–61

    Google Scholar 

  • Polonenko DR, Scher FM, Kloepper JW, Singleton CA, Laliberte M, Zaleska I (1987) Effects of root colonizing bacteria on nodulation of soybean roots by Bradyrhizobium japonicum. Can J Microbiol 33:498–503

    Google Scholar 

  • Poppe K, Taraz K, Budzikiewicz H (1987) Pyoverdine type siderophores from Pseudomonas fluorescens. Tetrahedron 43:2261–2272

    CAS  Google Scholar 

  • Potgieter H, Alexander M (1966) Susceptibility and resistance of several fungi to microbial lysis. J Bacteriol 91:3204–3208

    Google Scholar 

  • Preisfeld A, Belimov AA, Dietz KJ, Safronova VI, Stepanok VV, Sergeyeva TA, Egorova TN, Matveyeva VA, Tsyganov VE, Borisov AY, Tikhonovich IA, Kluge C (2001) Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 47:642–652

    PubMed  Google Scholar 

  • Raaijmakers JM, Weller DM (1998) Natural plant protection by 2,4-diacetylphloroglucinol-producing Pseudomonas spp. in take-all decline soils. Mol Plant Microbe Interact 11:144–152

    CAS  Google Scholar 

  • Raaijmakers JM, Weller DM (2001) Exploiting genotypic diversity of 2,4-diacetylphloroglucinol-producing Pseudomonas spp.: characterization of superior root-colonizing P. fluorescens strain Q8r1-96. Appl Environ Microbiol 67:2545–2554

    Google Scholar 

  • Raupach GS, Liu L, Murphy JF, Tuzun S, Kloepper JW (1996) Induced systemic resistance in cucumber and tomato against cucumber mosaic cucumovirus using plant growth-promoting rhizobacteria (PGPR). Plant Dis 80:891–894

    Google Scholar 

  • Ravindra Naik P, Sakthivel N (2006) Functional characterization of a novel hydrocarbonoclastic Pseudomonas sp. strain PUP6 with plant-growth-promoting traits and antifungal potential. Res Microbiol 157:538–546

    Google Scholar 

  • Ravindra Naik P, Raman G, Badri Narayanan K, Sakthivel N (2008) Assessment of genetic and functional diversity of phosphate solubilizing fluorescent pseudomonads isolated from rhizospheric soil. BMC Microbiol 8:230

    Google Scholar 

  • Reddi TK, Khudiakov YP, Borovkov AV (1969) Pseudomonas fluorescens strain 26.0, producing phytotoxic substances. Mikrobiologiia 38:909–913

    CAS  Google Scholar 

  • Renwick A, Campbell R, Coe S (1991) Assessment of in vivo screening systems for potential biocontrol agents of Gaeumannomyces graminis. Plant Pathol 40:524–532

    Google Scholar 

  • Richardson AE, Hadobas PA, Hayes JE, O’Hara JE, Simpson RJ (2001) Utilization of phosphorus by pasture plants supplied with myo-inositol hexaphosphate is enhanced by the presence of soil microorganisms. Plant Soil 229:47–56

    CAS  Google Scholar 

  • Rodelas B, Salmeron V, Martinez-Toledo MV, Gonzales-Lopez J (1993) Production of vitamins by Azospirillum brasilense in chemically defined media. Plant Soil 153:97–101

    CAS  Google Scholar 

  • Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    PubMed  CAS  Google Scholar 

  • Rosales AM, Thomashow LS, Cook RJ, Mew TW (1995) Isolation and identification of antifungal metabolite produced by rice associated antagonistic Pseudomonas spp. Phytopathology 85:1028–1032

    CAS  Google Scholar 

  • Rovira AD, Harris IR (1961) Plant root excretion in relation to the rhizosphere effect. V. The exudation of B-group vitamins. Plant Soil 19:199–211

    Google Scholar 

  • Rovira AD, McDonald HJ (1986) Effects of the herbicide chlorosulfuron on Rhizoctonia bare patch and take-all of barley and wheat. Plant Dis 70:879–882

    CAS  Google Scholar 

  • Sacherer P, Defago G, Haas D (1994) Extracellular protease and phospholipase C are controlled by global regulatory gene gacA in the biocontrol strain Pseudomonas fluorescens CHA0. FEMS Microbiol Lett 116:155–160

    PubMed  CAS  Google Scholar 

  • Sakthivel N, Gnanamanickam SS (1987) Evaluation of Pseudomonas fluorescens for suppression of sheath-rot disease and for enhancement of grain yields in rice (Oryza sativa L). Appl Environ Microbiol 53:2056–2059

    PubMed  CAS  Google Scholar 

  • Sakthivel N, Gnanamanickam SS (1989) Incidence of different biovars of Pseudomonas fluorescens in flooded rice rhizospheres in India. Agric Ecosyst Environ 25:287–298

    Google Scholar 

  • Sakthivel N, Sunish Kumar R (2008) Dimer of phenazine-1-carboxylic acid and to the process of preparation thereof. USPTO 7, 365, 194 B2, 9 Apr, 2008

    Google Scholar 

  • Salisbury FB (1994) The role of plant hormones plant environment interactions. In: Wilkinson RE (ed) Plant environment interactions. Dekker, New York, pp 39–81

    Google Scholar 

  • Sands DC, Rovira AD (1971) Pseudomonas fluorescens biotype G, the dominant fluorescent pseudomonads in south Australian soils and wheat rhizosphere. J Appl Bacteriol 34:261–275

    PubMed  CAS  Google Scholar 

  • Scher FM, Baker R (1982) Effects of Pseudomonas putida and a synthetic iron chelator on induction of soil suppressiveness to Fusarium wilt pathogens. Phytopathology 72:1567–1573

    CAS  Google Scholar 

  • Scherff RH (1973) Control of bacterial blight of soybean by Bdellovibrio bacteriovorus. Phytopathology 63:400–402

    Google Scholar 

  • Schroth MN, Hancock JG (1981) Selected topics in biological control. Annu Rev Microbiol 35:453–476

    PubMed  CAS  Google Scholar 

  • Schroth MN, Hidebrand DC, Panopoulos N (1992) Phytopathogenic pseudomonads and related plant-associated pseudomonads. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes: a handbook on the biology of bacteria: ecophysiology, isolation, identification, applications. Springer, New York, pp 3104–3131

    Google Scholar 

  • Shah S, Li J, Moffatt BA, Glick BR (1998) Isolation and characterization of ACC deaminase genes from two different plant growth-promoting rhizobacteria. Can J Microbiol 44:833–843

    PubMed  CAS  Google Scholar 

  • Shanahan P, O–Sullivan DJ, Simpson P, Glennon JD, O’Gara F (1992) Isolation of 2,4-diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physiological parameters influencing its production. Appl Environ Microbiol 58:353–358

    Google Scholar 

  • Shapira R, Ordenthch A, Chet I, Eppenheim AB (1989) Control of plant diseases by chitinase expressed from cloned DNA in Escherichia coli. Phytopathology 79:1246–1249

    CAS  Google Scholar 

  • Shenker M, Oliver I, Helmann M, Hadar Y, Chen Y (1992) Utilization by tomatoes of iron mediated by a siderophore produced by Rhizopus arrhizus. J Plant Nutr 15:2173–2182

    CAS  Google Scholar 

  • Shenker M, Ghirlando R, Oliver I, Helmann M, Hadar Y, Chen Y (1995) Chemical structure and biological activity of rhizoferrin-a siderophore produced by Rhizopus arrhizus. Soil Sci Soc Am J 59:837–843

    CAS  Google Scholar 

  • Siddiqui ZA (2006) PGPR: prospective biocontrol agents of plant pathogens. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, The Netherlands, pp 111–142

    Google Scholar 

  • Sierra S, Rodelas B, Martinez-Toledo MV, Pozo C, Gonzales-Lopez J (1999) Production of B-group vitamins by two Rhizobium strains in chemically defined media. J Appl Microbiol 86:851–858

    CAS  Google Scholar 

  • Sneath PHA, Stevens M, Sackin MJ (1981) Numerical taxonomy of Pseudomonas based on published records of substrate utilization. Antonie Van Leeuwenhoek 47:423–448

    PubMed  CAS  Google Scholar 

  • Sneh B (1981) Use of rhizosphere chitinolytic bacteria for biological control of Fusarium oxysporum f. sp. diunthi in carnation. Phytopathology 100:251–256

    Google Scholar 

  • Sorensen D, Nielsen TH, Christophersen C, Sorensen J, Gajhede M (2001) Cyclic lipoundecapeptide amphisin from Pseudomonas sp. strain DSS73. Acta Crystallogr C 57:1123–1124

    PubMed  CAS  Google Scholar 

  • Stanier RY, Palleroni NJ, Doudoroff M (1966) The aerobic pseudomonads: a taxonomic study. J Gen Microbiol 43:159–217

    PubMed  CAS  Google Scholar 

  • Stephens PM, O’Sullivan M, O’Gara F (1987) Influence of bacteriophages on the colonization of strains of Pseudomonas fluorescens in the rhizosphere of sugarbeet. Appl Environ Microbiol 53:1164–1167

    PubMed  CAS  Google Scholar 

  • Stevans AM, Dolan KM, Greenberg EP (1994) Synergistic binding of the Vibrio fischeri LuxR transcriptional activator domain and RNA polymerase to lux promoter region. Proc Natl Acad Sci USA 91:12619–12623

    Google Scholar 

  • Stewart V (1988) Nitrate respiration in relation to facultative metabolism in enterobacteria. Microbiol Rev 52:190–232

    PubMed  CAS  Google Scholar 

  • Streit WR, Joseph CM, Phillips DA (1996) Biotin and other water-soluble vitamins are key growth factors for alfalfa root colonization by Rhizobium meliloti 1021. Mol Plant Microbe Interact 5:330–338

    Google Scholar 

  • Strzelczyk E, Leniarska U (1985) Production of B-group vitamins by mycorrhizal fungi and actinomycetes isolated from the root zone of pine (Pinus sylvestris L.). Plant Soil 86:387–394

    CAS  Google Scholar 

  • Sunish Kumar R, Ayyadurai N, Pandiaraja P, Reddy AV, Venkateswarlu Y, Prakash O, Sakthivel N (2005) Characterization of antifungal metabolite produced by a new strain Pseudomonas aeruginosa PUPa3 that exhibits broad-spectrum antifungal activity and biofertilizing traits. J Appl Microbiol 98:145–154

    PubMed  Google Scholar 

  • Suslow TV, Schroth MN (1982) Rhizobacteria of sugar beets: effects of seed application and root colonization on yield. Phytopathology 72:199–206

    Google Scholar 

  • Sutra L, Risede JM, Gardan L (2000) Isolation of fluorescent pseudomonads from the rhizosphere of banana plants antagonistic towards root necrosing fungi. Lett Appl Microbiol 31:289–293

    PubMed  CAS  Google Scholar 

  • Thomashow LS, Weller DM (1988) Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici. J Bacteriol 170:3499–3508

    PubMed  CAS  Google Scholar 

  • Thomashow LS, Weller DM, Bonsall RF, Pierson LS (1990) Production of the antibiotic phenazine 1-carboxylic acid by fluorescent Pseudomonas species in the rhizosphere of wheat. Appl Environ Microbiol 56:908–912

    PubMed  CAS  Google Scholar 

  • Thrane C, Nielsen MN, Nielsen TH, Olsson S, Sorensen J (2000) Viscosinamide-producing Pseudomonas fluorescens DR54 exerts a biocontrol effect on Pythium ultimum in sugar beat rhizosphere. FEMS Microbiol Ecol 33:139–146

    PubMed  CAS  Google Scholar 

  • Thrane C, Nielsen MN, Sorensen J, Olsson S (2001) Pseudomonas fluorescens DR54 reduces sclerotia formation, biomass development, and disease incidence of Rhizoctonia solani causing damping-off in sugar beet. Microb Ecol 42:438–445

    PubMed  CAS  Google Scholar 

  • Tombolini R, vander Gaag DJ, Gerhardson B, Jansson JK (1999) Colonization pattern of the biocontrol strain Pseudomonas chlororaphis MA342 on barely seeds visualized by using green fluorescent protein. Appl Environ Microbiol 65:3674–3680

    PubMed  CAS  Google Scholar 

  • Troxler J, Berling CH, Moenne-Loccoz Y, Keel C, D’efago G (1997) Interactions between the biocontrol agent Pseudomonas fluorescens CHA0 and Thielaviopsis basicola in tobacco roots observed by immunofluorescence microscopy. Plant Pathol 46:62–71

    Google Scholar 

  • Turner JM, Messenger AJ (1986) Occurrence, biochemistry and physiology of phenazine pigment production. Adv Microb Physiol 27:211–275

    PubMed  CAS  Google Scholar 

  • Van Etten HD, Kistler HC (1984) Microbial enzyme regulation and its importance for pathogenicity. In: Kosuge T, Nester EW (eds) Plant–microbe interactions. Macmillan, New York, pp 42–68

    Google Scholar 

  • Van Loon LC (2008) Manipulating the plant’s innate immune system by inducing resistance. Phytoparasitica 36:103–106

    Google Scholar 

  • Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    PubMed  Google Scholar 

  • Van Peer R, Schippers B (1988) Plant growth responses to bacterization with selected Pseudomonas spp. strains and rhizosphere microbial development in hydroponic cultures. Can J Microbiol 35:456–463

    Google Scholar 

  • Van Peer R, Schippers B (1992) Lipopolysaccharides of plant-growth promoting Pseudomonas sp. strain WCS417r induce resistance in carnation to Fusarium wilt. Neth J Plant Pathol 98:129–139

    Google Scholar 

  • Van Peer R, Niemann GJ, Schippers B (1991) Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology 81:728–733

    Google Scholar 

  • van Wees SCM, Pieterse CMJ, Trijssenaar A, Van T, Westende YAM, Hartog F, van Loon LC (1997) Differential induction of systemic resistance in Arabidopsis by biocontrol bacteria. Molecular Plant-Microbe Int 10:716–724

    Google Scholar 

  • Vincent MN, Harrison LA, Brackin JM, Kovacevich PA, Mukerji P, Weller DM, Pierson EA (1991) Genetic analysis of the antifungal activity of a soil borne Pseudomonas aureofaciens strain. Appl Environ Microbiol 57:2928–2934

    PubMed  CAS  Google Scholar 

  • Voisard C, Keel C, Haas D, Defago G (1981) Cyanide production in Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J 8:351–358

    Google Scholar 

  • Wei G, Kloepper JW, Tuzun S (1991) Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology 81:1508–1512

    Google Scholar 

  • Weller DM (1988) Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol 26:379–407

    Google Scholar 

  • Weller DM, Cook RJ (1983) Suppression of take-all of wheat by seed treatments with fluorescent pseudomonads. Phytopathology 73:463–469

    Google Scholar 

  • Weller DM, Zhang BX, Cook RJ (1985) Application of a rapid screening test for selection of bacteria suppressive to take all of wheat. Plant Dis 69:710–713

    Google Scholar 

  • Zahnder GW, Murphy JF, Sikora EJ, Kloepper JW (2001) Application of rhizobacteria for induced resistance. Eur J Plant Pathol 107:39–50

    Google Scholar 

  • Zhou T, Paulitz TC (1994) Induced resistance in the biocontrol of Pythium aphanidermatum by Pseudomonas spp. on cucumber. J Phytopathol 142:51–63

    Google Scholar 

  • Zipfel C, Robatzek S, Navarro L, Oakeley E, Jones JDG, Felix G, Boller T (2004) Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428:764–767

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Department of Biotechnology (DBT), New Delhi, Government of India, for financial support through major research projects awarded to Prof. N. Sakthivel and the Department of Science and Technology (DST), New Delhi, Government of India, for financial support through Funds for Improvement by Science and Technology (FIST) programme coordinated by Prof. N. Sakthivel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Sakthivel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pathma, J., Kennedy, R.K., Sakthivel, N. (2011). Mechanisms of Fluorescent Pseudomonads That Mediate Biological Control of Phytopathogens and Plant Growth Promotion of Crop Plants. In: Maheshwari, D. (eds) Bacteria in Agrobiology: Plant Growth Responses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20332-9_4

Download citation

Publish with us

Policies and ethics