Skip to main content

Inverse Problems in Statistics

  • Chapter
  • First Online:
Inverse Problems and High-Dimensional Estimation

Part of the book series: Lecture Notes in Statistics ((LNSP,volume 203))

Abstract

There exist many fields where inverse problems appear. Some examples are: astronomy (blurred images of the Hubble satellite), econometrics (instrumental variables), financial mathematics (model calibration of the volatility), medical image processing (X-ray tomography), and quantum physics (quantum homodyne tomography). These are problems where we have indirect observations of an object (a function) that we want to reconstruct, through a linear operator A. Due to its indirect nature, solving an inverse problem is usually rather difficult. For this reason, one needs regularization methods in order to get a stable and accurate reconstruction. We present the framework of statistical inverse problems where the data are corrupted by some stochastic error. This white noise model may be discretized in the spectral domain using Singular Value Decomposition (SVD), when the operator A is compact. Several examples of inverse problems where the SVD is known are presented (circular deconvolution, heat equation, tomography). We explain some basic issues regarding nonparametric statistics applied to inverse problems. Standard regularization methods and their counterpart as estimation procedures by use of SVD are discussed (projection, Landweber, Tikhonov, . . . ). Several classical statistical approaches like minimax risk and optimal rates of convergence, are presented. This notion of optimality leads to some optimal choice of the tuning parameter. However these optimal parameters are unachievable since they depend on the unknown smoothness of the function. This leads to more recent concepts like adaptive estimation and oracle inequalities. Several data-driven selection procedures of the regularization parameter are discussed in details, among these: model selection methods, Stein’s unbiased risk estimation and the recent risk hull method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adorf, H.M.: Hubble space telescope image restoration in its fourth year. Inverse Problems 11, 639–653 (1995)

    Article  Google Scholar 

  2. Akaike, H.: Information theory and an extension of the maximum likelihood principle. In: B. Petrov, F. Cz´aki (eds.) Proceedings of the Second International Symposium on Information Theory, pp. 267–281. Akademiai Kiad´o, Budapest (1973)

    Google Scholar 

  3. Akaike, H.: A new look at the statistical model identification. IEEE Trans. Automat. Control 19, 716–723 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barron, A., Birgé, L., Massart, P.: Risk bounds for model selection via penalization. Probab. Theory Related Fields 113, 301–413 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bauer, F., Hohage, T.: A Lepski-type stopping rule for regularized Newton methods. Inverse Problems 21, 1975–1991 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bauer, F., Hohage, T., Munk, A.: Iteratively regularized Gauss-Newton method for nonlinear inverse problems with random noise. SIAM J. Numer. Anal. 47, 1827–1846 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Belitser, E., Levit, B.: On minimax filtering on ellipsoids. Math. Methods Statist. 4, 259–273(1995)

    MathSciNet  MATH  Google Scholar 

  8. Birgé, L., Massart, P.: Gaussian model selection. J. Eur. Math. Soc. 3, 203–268 (2001)

    Article  MATH  Google Scholar 

  9. Bissantz, N., Hohage, T., Munk, A., Ruymgaart, F.: Convergence rates of general regularizations methods for statistical inverse problems and application. SIAM J. Numer. Anal. 45, 2610–2636 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brakage, H.: On ill-posed problems and the method of conjuguate gradients. In: Inverse and ill-posed problems. Academic Press, Orlando (1987)

    Google Scholar 

  11. Bretagnolle, J., Huber, C.: Estimation des densités : risque minimax. Z. Wahrsch. Verw. Gebiete 47, 199–237 (1976)

    MathSciNet  Google Scholar 

  12. Brezis, H.: Analyse fonctionnelle, Théorie et applications. Dunod, Paris (1999)

    Google Scholar 

  13. Brown, L., Low, M.: Asymptotic equivalence of nonparametric regression and white noise. Ann. Statist. 24, 2384–2398 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Brown, L., Low, M., Zhao, L.: Superefficiency in nonparametric function estimation. Ann. Statist. 25, 898–924 (1997)

    MathSciNet  Google Scholar 

  15. B¨uhlmann, P., Yu, B.: Boosting with _2-loss: regression and classification. J. Amer. Statist. Assoc. 98, 324–339 (2003)

    Google Scholar 

  16. Butucea, C., Tsybakov, A.: Sharp optimality in density deconvolution with dominating bias. Theory Probab. Appl. 52, 24–39 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cai, T.: Adaptive wavelet estimation: a block thresholding and oracle inequality approach. Ann. Statist. 27, 2607–2625 (1999)

    Article  Google Scholar 

  18. Cand`es, E.: Modern statistical estimation via oracle inequalities. Acta Numer. 15, 257–325 (2006)

    Google Scholar 

  19. Cand`es, E., Donoho, D.: Recovering edges in ill-posed inverse problems: Optimality of curvelet frames. Ann. Statist. 30, 784–842 (2002)

    Google Scholar 

  20. Cavalier, L.: Efficient estimation of a density in a problem of tomography. Ann. Statist. 28, 330–347 (2000)

    Article  MathSciNet  Google Scholar 

  21. Cavalier, L.: On the problem of local adaptive estimation in tomography. Bernoulli 7, 63–78

    Google Scholar 

  22. (2001)

    Google Scholar 

  23. Cavalier, L.: Inverse problems with non-compact operator. J. of Statist. Plann. Inference 136, 390–400 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Cavalier, L.: Nonparametric statistical inverse problems. Inverse Problems 24, 1–19 (2008)

    MathSciNet  Google Scholar 

  25. Cavalier, L., Golubev, G., Lepski, O., Tsybakov, A.: Block thresholding and sharp adaptive estimation in severely ill-posed inverse problems. Theory Probab. Appl. 48, 426–446 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Cavalier, L., Golubev, G., Picard, D., Tsybakov, A.: Oracle inequalities in inverse problems. Ann. Statist. 30, 843–874 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Cavalier, L., Golubev, Y.: Risk hull method and regularization by projections of ill-posed inverse problems. Ann. Statist. 34, 1653–1677 (2006)

    Article  MathSciNet  Google Scholar 

  28. Cavalier, L., Hengartner, N.: Adaptive estimation for inverse problems with noisy operators. Inverse Problems 21, 1345–1361 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Cavalier, L., Koo, J.Y.: Poisson intensity estimation for tomographic data using a wavelet shrinkage approach. IEEE Trans. Inform. Theory 48, 2794–2802 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Cavalier, L., Raimondo, M.: Wavelet deconvolution with noisy eigenvalues. IEEE Trans. Signal Process. 55, 2414–2424 (2007)

    Article  MathSciNet  Google Scholar 

  31. Cavalier, L., Raimondo, M.: Multiscale density estimation with errors in variables. J. Korean Statist. Soc. (2010)

    Google Scholar 

  32. Cavalier, L., Tsybakov, A.: Penalized blockwise Stein’s method, monotone oracles and sharp adaptive estimation. Math. Methods Statist. 10, 247–282 (2001)

    MathSciNet  MATH  Google Scholar 

  33. Cavalier, L., Tsybakov, A.: Sharp adaptation for inverse problems with random noise. Probab. Theory Related Fields 123, 323–354 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  34. Chen, X., Reiss, M.: On rate optimality for ill-posed inverse problems in econometrics (2010). In press

    Google Scholar 

  35. Cohen, A., Hoffmann, M., Reiss, M.: Adaptive wavelet Galerkin method for linear inverse problems. SIAM J. Numer. Anal. 42, 1479–1501 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  36. Comte, F., Rozenholc, Y., Taupin, M.L.: Penalized contrast estimator for adaptive density deconvolution. Canad. J. Statist. 34, 431–452 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  37. Craven, P., Wahba, G.: Smoothing noisy data with spline functions: estimating the correct degree of smoothing by the method of generalized cross-validation. Numer. Math. 31, 377–403 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  38. Deans, S.: The Radon Transform and some of its Applications. Wiley, New York (1983)

    MATH  Google Scholar 

  39. Donoho, D.: Statistical estimation and optimal recovery. Ann. Statist. 22, 238–270 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  40. Donoho, D.: Nonlinear solution of linear inverse problems by wavelet-vaguelette decomposition. Appl. Comput. Harmon. Anal. 2, 101–126 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  41. Donoho, D., Johnstone, I.: Ideal spatial adaptation via wavelet shrinkage. Biometrika 81, 425–445 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  42. Donoho, D., Johnstone, I.: Adapting to unknown smoothness via wavelet shrinkage. J. Amer. Statist. Assoc. 90, 1200–1224 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  43. Donoho, D., Johnstone, I.: Minimax estimation via wavelet shrinkage. Ann. Statist. 26, 879–921 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  44. Donoho, D., Low, M.: Renormalization exponents and optimal pointwise rates of convergence. Ann. Statist. 20, 944–970 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  45. Efroimovich, S., Pinsker, M.: Learning algorithm for nonparametric filtering. Autom. Remote Control 11, 1434–1440 (1984)

    Google Scholar 

  46. Efromovich, S.: Robust and efficient recovery of a signal passed through a filter and then

    Google Scholar 

  47. contaminated by non-Gaussian noise. IEEE Trans. Inform. Theory 43, 1184–1191 (1997)

    Google Scholar 

  48. Efromovich, S.: Nonparametric Curve Estimation. Springer, New York (1998)

    Google Scholar 

  49. Efromovich, S.: Simultaneous sharp adaptive estimation of functions and their derivatives. Ann. Statist. 26, 273–278 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  50. Efromovich, S., Koltchinskii, V.: On inverse problems with unknown operators. IEEE Trans. Inform. Theory 47, 2876–2893 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  51. Engl, H., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer Academic Publishers (1996)

    Google Scholar 

  52. Ermakov, M.: Minimax estimation of the solution of an ill-posed convolution type problem. Problems Inform. Transmission 25, 191–200 (1989)

    MathSciNet  Google Scholar 

  53. Evans, S., Stark, P.: Inverse problems as statistics. Inverse Problems 18, 55–97 (2002)

    MathSciNet  Google Scholar 

  54. Fan, J.: On the optimal rates of convergence for nonparametric deconvolution problems. Ann. Statist. 19, 1257–1272 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  55. Florens, J., Johannes, J., Van Bellegem, S.: Identification and estimation by penalization in nonparametric instrumental regression. Econ. Theory (2010). In press

    Google Scholar 

  56. Florens, J.P.: Inverse problems and structural econometrics: the example of instrumental variables. In: Advances in Economics and Econometrics: Theory and Applications, vol. 2, pp. 284–311 (2003)

    Article  Google Scholar 

  57. Goldenshluger, A.: On pointwise adaptive nonparametric deconvolution. Bernoulli 5, 907–925 (1999)

    MathSciNet  MATH  Google Scholar 

  58. Goldenshluger, A., Pereverzev, S.: Adaptive estimation of linear functionals in Hilbert scales from indirect white noise observations. Probab. Theory Related Fields 118, 169–186 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  59. Goldenshluger, A., Spokoiny, V.: On the shape-from-moments problem and recovering edges from noisy Radon data. Probab. Theory Related Fields 128, 123–140 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  60. Goldenshluger, A., Tsybakov, A.: Adaptive prediction and estimation in linear regression with infinitely many parameters. Ann. Statist. 29, 1601–1619 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  61. Golubev, G.: Quasi-linear estimates of signals in L2. Problems Inform. Transmission 26, 15–20 (1990)

    MathSciNet  MATH  Google Scholar 

  62. Golubev, G.: The principle of penalized empirical risk in severely ill-posed problems. Probab. Theory Related Fields 130, 18–38 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  63. Golubev, G., Khasminskii, R.: A statistical approach to some inverse problems for partial differential equations. Problems Inform. Transmission 35, 51–66 (1999)

    MathSciNet  Google Scholar 

  64. Golubev, G., Khasminskii, R.: A statistical approach to the Cauchy problem for the Laplace equation. Lecture Notes Monograph Series 36, 419–433 (2001)

    Article  MathSciNet  Google Scholar 

  65. Grama, I., Nussbaum, M.: Asymptotic equivalence for nonparametric regression. Math. Methods Statist. 11, 1–36 (2002)

    MathSciNet  MATH  Google Scholar 

  66. Groetsch, C.: Generalized Inverses of Linear Operators: Representation and Approximation. Dekker, New York (1977)

    MATH  Google Scholar 

  67. Hadamard, J.: Le probl`eme de Cauchy et les équations aux dérivées partielles hyperboliques. Hermann, Paris (1932)

    Google Scholar 

  68. Hall, P., Horowitz, J.: Nonparametric methods for inference in the presence of instrumental variables. Ann. Statist. 33, 2904–2929 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  69. Hall, P., Kerkyacharian, G., Picard, D.: Block threshold rules for curve estimation using kernel and wavelet methods. Ann. Statist. 26, 922–942 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  70. Halmos, P.: What does the spectral theorem say? Amer. Math. Monthly 70, 241–247 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  71. Hida, T.: Brownian Motion. Springer-Verlarg, New York-Berlin (1980)

    MATH  Google Scholar 

  72. Hoerl, A.: Application of ridge analysis to regression problems. Chem. Eng. Progress 58, 54–59 (1962)

    Google Scholar 

  73. Hoffmann, M., Reiss, M.: Nonlinear estimation for linear inverse problems with error in the operator. Ann. Statist. 36, 310–336 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  74. Hohage, T.: Lecture notes on inverse problems (2002). Lectures given at the University of Göttingen

    Google Scholar 

  75. Hutson, V., Pym, J.: Applications of Functional Analysis and Operator Theory. Academic Press, London (1980)

    MATH  Google Scholar 

  76. Ibragimov, I., Khasminskii, R.: Statistical Estimation: Asymptotic Theory. Springer, New York (1981)

    MATH  Google Scholar 

  77. Ibragimov, I., Khasminskii, R.: On nonparametric estimation of the value of a linear functional in Gaussian white noise. Theory Probab. Appl. 29, 19–32 (1984)

    MathSciNet  MATH  Google Scholar 

  78. James, W., Stein, C.: Estimation with quadratic loss. In: Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability, pp. 361–380. University of California Press (1961)

    Google Scholar 

  79. Johnstone, I.: Function estimation in Gaussian noise: sequence models (1998). Draft of a monograph

    Google Scholar 

  80. Johnstone, I.: Wavelet shrinkage for correlated data and inverse problems: adaptivity results. Statist. Sinica 9, 51–83 (1999)

    MathSciNet  MATH  Google Scholar 

  81. Johnstone, I., Kerkyacharian, G., Picard, D., Raimondo, M.: Wavelet deconvolution in a periodic setting. J. R. Stat. Soc. Ser. B Stat. Methodol. 66, 547–573 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  82. Johnstone, I., Silverman, B.: Speed of estimation in positron emission tomography and related inverse problems. Ann. Statist. 18, 251–280 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  83. Kaipio, J., Somersalo, E.: Statistical and Computational Inverse Problems. Springer (2004)

    Google Scholar 

  84. Kneip, A.: Ordered linear smoothers. Ann. Statist. 22, 835–866 (1994)

    MathSciNet  MATH  Google Scholar 

  85. Kolaczyk, E.: A wavelet shrinkage approach to tomographic image reconstruction. J. Amer. Statist. Assoc. 91, 1079–1090 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  86. Koo, J.Y.: Optimal rates of convergence for nonparametric statistical inverse problems. Ann. Statist. 21, 590–599 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  87. Korostelev, A., Tsybakov, A.: Optimal rates of convergence of estimators in a probabilistic setup of tomography problem. Probl. Inf. Transm. 27, 73–81 (1991)

    MathSciNet  MATH  Google Scholar 

  88. Landweber, L.: An iteration formula for Fredholm equations of the first kind. Amer. J. Math. 73, 615–624 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  89. Lepskii, O.: One problem of adaptive estimation in Gaussian white noise. Theory Probab. Appl. 35, 459–470 (1990)

    Article  MathSciNet  Google Scholar 

  90. Lepskii, O.: Asymptotic minimax adaptive estimation. 1. Upper bounds. Theory Probab. Appl. 36, 654–659 (1991)

    Google Scholar 

  91. Lepskii, O.: Asymptotic minimax adaptive estimation. 2. Statistical model without optimal adaptation. Adaptive estimators. Theory Probab. Appl. 37, 468–481 (1992)

    Google Scholar 

  92. Li, K.C.: Asymptotic optimality of CP,CL, cross-validation and generalized cross-validation: Discrete index set. Ann. Statist. 15, 958–976 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  93. Loubes, J.M., Ludena, C.: Adaptive complexity regularization for linear inverse problems. Electron. J. Stat. 2, 661–677 (2008)

    Article  MathSciNet  Google Scholar 

  94. Loubes, J.M., Ludena, C.: Penalized estimators for nonlinear inverse problems. ESAIM Probab. Stat. (2010)

    Google Scholar 

  95. Loubes, J.M., Rivoirard, V.: Review of rates of convergence and regularity conditions for inverse problems. Int. J. Tomogr. and Stat. (2009)

    Google Scholar 

  96. Louis, A., Maass, P.: A mollifier method for linear operator equations of the first kind. Inverse Problems 6, 427–440 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  97. Mair, B., Ruymgaart, F.: Statistical estimation in Hilbert scale. SIAM J. Appl. Math. 56, 1424–1444 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  98. Mallows, C.: Some comments on Cp. Technometrics 15, 661–675 (1973)

    MATH  Google Scholar 

  99. Marteau, C.: Regularization of inverse problems with unknown operator. Math. Methods Statist. 15, 415–443 (2006)

    MathSciNet  Google Scholar 

  100. Marteau, C.: On the stability of the risk hull method for projection estimators. J. Statist. Plann. Inference 139, 1821–1835 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  101. Marteau, C.: Risk hull method for general family of estimators. ESAIM Probab. Stat. (2010)

    Google Scholar 

  102. Massart, P.: Concentration Inequalities and Model Selection. Lecture Notes in Mathematics, Springer, Berlin (2007)

    MATH  Google Scholar 

  103. Mathé, P.: The Lepskii principle revisited. Inverse Problems 22, 11–15 (2006)

    Article  Google Scholar 

  104. Mathé, P., Pereverzev, S.: Optimal discretization of inverse problems in Hilbert scales. Regularization

    Google Scholar 

  105. and self-regularization of projection methods. SIAM J. Numer. Anal. 38, 1999–2021 (2001)

    Google Scholar 

  106. Mathé, P., Pereverzev, S.: Regularization of some linear ill-posed problems with discretized random noisy data. Math. Comp. 75, 1913–1929 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  107. Natterer, F.: The Mathematics of Computerized Tomography. J. Wiley, Chichester (1986)

    MATH  Google Scholar 

  108. Nemirovski, A.: Topics in Non-Parametric Statistics. Lecture Notes in Mathematics, Springer (2000)

    Google Scholar 

  109. Nemirovskii, A., Polyak, B.: Iterative methods for solving linear ill-posed problems under precise information I. Engrg. Cybernetics 22, 1–11 (1984)

    MathSciNet  Google Scholar 

  110. Nussbaum, M.: Asymptotic equivalence of density estimation and Gaussian white noise. Ann. Statist. 24, 2399–2430 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  111. O’Sullivan, F.: A statistical perspective on ill-posed problems. Statist. Sci. 1, 502–527 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  112. Pinsker, M.: Optimal filtering of square integrable signals in Gaussian white noise. Problems Inform. Transmission 16, 120–133 (1980)

    MATH  Google Scholar 

  113. Plaskota, L.: Noisy Information and Computational Complexity. Cambridge University Press (1996)

    Google Scholar 

  114. Polyak, B., Tsybakov, A.: Asymptotic optimality of the Cp-test for the orthogonal series estimation of regression. Theory Probab. Appl. 35, 293–306 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  115. Raus, T., Hamarik, U., Palm, R.: Use of extrapolation in regularization methods. J. Inverse Ill-Posed Probl. 15, 277 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  116. Reiss, M.: Asymptotic equivalence for nonparametric regression with multivariate and random design. Ann. Statist. 36, 1957–1982 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  117. Rigollet, P.: Adaptive density estimation using the blockwise Stein method. Bernoulli 12, 351–370 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  118. Rosenblatt, M.: Remarks on some nonparametric estimates of a density function. Ann. Math.

    Google Scholar 

  119. Statist. 27, 832–837 (1956)

    Google Scholar 

  120. Ruymgaart, F.: A short introduction to inverse statistical inference (2001). Lecture given at Institut Henri Poincaré, Paris

    Google Scholar 

  121. Sabatier, P.: Past and future of inverse problems. J. Math. Phys. 41, 4082–4124 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  122. Schwarz, G.: Estimating the dimension of a model. Ann. Statist. 6, 461–464 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  123. Shibata, R.: An optimal selection of regression variables. Biometrika 68, 45–54 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  124. Stein, C.: Inadmissibility of the usual estimator of the mean of a multivariate distribution. In: Proceedings of the 3rd Berkeley Symposium on Mathematical Statistics and Probability, pp.

    Google Scholar 

  125. 197–206. University of California Press (1956)

    Google Scholar 

  126. Stein, C.: Estimation of the mean of a multivariate normal distribution. Ann. Statist. 9, 1135–1151 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  127. Stone, C.: Optimal rates of convergence for nonparametric estimators. Ann. Statist. 8, 1348–1360 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  128. Sudakov, V., Khalfin, L.: Statistical approach to ill-posed problems in mathematical physics. Soviet Math. Dokl. 157, 1094–1096 (1964)

    Google Scholar 

  129. Talagrand, M.: Concentration of measure and isoperimetric inequalities in product spaces. Publ. Math. IHES 81, 73–205 (1995)

    MathSciNet  MATH  Google Scholar 

  130. Taylor, M.: Partial differential equations, vol. 2. Springer, New York (1996)

    Google Scholar 

  131. Tenorio, L.: Statistical regularization of inverse problems. SIAM Rev. 43, 347–366 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  132. Tikhonov, A.: Regularization of incorrectly posed problems. Soviet Math. Dokl. 4, 1624–1627 (1963)

    MATH  Google Scholar 

  133. Tikhonov, A., Arsenin, V.: Solution of Ill-posed Problems. Winston & Sons (1977)

    Google Scholar 

  134. Tsybakov, A.: Introduction to Nonparametric Estimation. Springer series in statistics (2009)

    Google Scholar 

  135. Vogel, C.: Computational Methods for Inverse Problems. SIAM, Philadelphia (2002)

    Book  MATH  Google Scholar 

  136. Wahba, G.: Spline Models for Observational Data. SIAM, Philadelphia (1990)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Cavalier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cavalier, L. (2011). Inverse Problems in Statistics. In: Alquier, P., Gautier, E., Stoltz, G. (eds) Inverse Problems and High-Dimensional Estimation. Lecture Notes in Statistics(), vol 203. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19989-9_1

Download citation

Publish with us

Policies and ethics