Skip to main content

Microbial Biofouling: Unsolved Problems, Insufficient Approaches, and Possible Solutions

  • Chapter
  • First Online:
Biofilm Highlights

Part of the book series: Springer Series on Biofilms ((BIOFILMS,volume 5))

Abstract

Microbial biofouling is a very costly problem, keeping busy a billion dollar industry providing biocides, cleaners, and antifouling materials worldwide. Basically, five general reasons can be identified, which continuously compromise the efficacy of antifouling strategies:

  1. 1.

    Biofouling is detected by its effect on process performance or product quality and quantity. Early warning systems are very rare, although they could save costly countermeasures necessary for removing established fouling.

  2. 2.

    Usually, biofouling is diagnosed only indirectly, when other explanations fail. The common practice is to take water samples, which give no information about site and extent of biofouling deposits.

  3. 3.

    When finally the diagnosis “biofouling” is established, biocides are used which, in many cases, for the best kill microorganisms but do not really remove them. Killing, however, is not cleaning while frequently the presence of biomass and not its physiological activity is the problem.

  4. 4.

    Biofouling is a biofilm phenomenon and based on the fact that biofilms grow at the expense of nutrients; oxidizing biocides can make things even worse by breaking recalcitrant molecules down into biodegradable fragments. Nutrients have to be considered as potential biomass.

  5. 5.

    Efficacy control is performed again by process performance or product quality and not optimized by meaningful biofilm monitoring, verifying successful removal.

Thus, further biofouling is predictable. To overcome this vicious circle, an integrated strategy is suggested, which does not rely on one type of countermeasure, and which acknowledges that antifouling effects are essentially time dependent: long-term claims have to meet different (and more difficult) goals than short-term ones. An appropriate strategy includes the selection of low-adhesion, easy-to-clean surfaces, good housekeeping, early warning systems, limitation of nutrients, improvement of cleaners, strategic cleaning and monitoring of deposits. The goal is: to learn how to live with biofilms and keep their effects below the level of interference in the most efficient way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrewartha J, Perkins K, Sargison J, Osborn J, Walker G, Henderson A, Hallegraeff G (2010) Drag force and surface roughness measurements on freshwater biofouled surfaces. Biofouling 26:487–496

    PubMed  CAS  Google Scholar 

  • Angell P, Arrage AA, Mittelmann MW, White DC (1993) Online, non-destructive biomass determination of bacterial biofilms by fluorimetry. J Microbiol Meth 18:317–327

    CAS  Google Scholar 

  • Armstrong E, Boyd KG, Burgess JG (2000) Prevention of marine biofouling using natural: compounds from marine organisms. Biotechnol Annu Rev 6:221–241

    PubMed  CAS  Google Scholar 

  • Arp G, Reimer A, Reitner J (2001) Photosynthesis-induced biofilm calcifcation and calcium concentrations in Phanerozoic Oceans. Science 292:1701–1704

    PubMed  CAS  Google Scholar 

  • Azis PKA, Al-Tisan I, Sasikumar N (2001) Biofouling potential and environmental factors of seawater at a desalination plant intake. Desalination 135:69–82

    CAS  Google Scholar 

  • Baier RE (1982) Conditioning surfaces to suit the biomedical environment: recent progress. J Biomec Engg 104:257–271

    CAS  Google Scholar 

  • Ballantine DS, Wohltien H (1989) Surface acoustic devices for chemical analysis. Anal Chem 61:188–193

    Google Scholar 

  • Barraud N, Hasset DJ, Hwang S-H, Rice SA, Kjelleberg S, Webb JS (2009) Involvement of nitric oxide in dispersion of Pseudomonas aeruginosa. J Bact 188:7344–7353

    Google Scholar 

  • Bers AV, Wahl M (2004) The influence of natural surface microtopographies on fouling. Biofouling 20:43–51

    PubMed  CAS  Google Scholar 

  • Boulangé-Petermann L (1996) Processes of bioadhesion on stainless steel surfaces and cleanability: a review with special reference to food industry. Biofouling 10:275–300

    Google Scholar 

  • Braissant O, Cailleau G, Dupraz C, Verreccia EP (2003) Bacterially induced mineralization of calcium carbonate in terrestrial environments: the role of exopolysaccharides and amino acids. J Sed Res 73:485–490

    CAS  Google Scholar 

  • Brisou JF (1995) Biofilms: methods for enzymatic release of microorganisms. CRC, Boca Raton, New York, London, Tokyo, p 204

    Google Scholar 

  • Bruijs MCM, Venhuis LP, Jenner HA, Daniels DG, Licina GJ (2000) Cooling water biocide optimisation using an on-line biofilm monitor. KEMA Tech. Op. Serv. PO Box 9035, Arnhem, Gelderland; 6800 ET Netherlands

    Google Scholar 

  • Carman ML, Estes TG, Feinberg AW, Schumacher JF, Wilkerson W, Wilson LH, Callow ME, Callow JA, Brenan AB (2006) Engineered antifouling microtopographies: correlating wettability with cell attachment. Biofouling 22:11–21

    PubMed  CAS  Google Scholar 

  • Characklis WG (1990) Microbial biofouling. In: Characklis WR, Marshall KC (eds) Biofilms. Wiley, New York, pp 523–584

    Google Scholar 

  • Characklis WG, Turakhia MH, Zelver N (1990) Transport and interfacial transfer phenomena. In: Characklis WG, Marshall KC (eds) Biofilms. Wiley, New York, pp 265–340

    Google Scholar 

  • Cheyne I (2010) Regulation of marine antifouling in international and EC law. In: Dürr S, Thomason JC (eds) Biofouling. Wiley-Blackwell, Chichester, pp 306–318

    Google Scholar 

  • Cloete TE (2003) Biofouling: what we know and what we should know. Mat Corr 54:520–526

    CAS  Google Scholar 

  • Cloete ET, Maluleke M (2005) The use of the rotoscope as an on-line, real-time, non-destructive biofilm monitor. Wat Sci Technol 52:211–216

    CAS  Google Scholar 

  • Cole GC (1998) Pharmaceutical production facilities. Design and applications. CRC, Boca Raton

    Google Scholar 

  • Cornelissen ER, Vrouwenvelder JS, Heijman SGJ, Viallefont XD, van der Kooij D, Wessels LP (2007) Periodic air/water cleaning for control of biofouling in spiral wound membrane elements. J Mem Sci 287:94–101

    CAS  Google Scholar 

  • Costerton JW et al (1987) Bacterial biofilms in nature and disease. Ann Rev Microbiol 41:435–464

    CAS  Google Scholar 

  • Davies DG, Marques CNH (2009) A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. J Bacteriol 191:1393–1403

    PubMed  CAS  Google Scholar 

  • de Nys R, Givskov M, Kumar N, Kjelleberg S, Steinberg P (2006) Furanones. Prog Mol Subcell Biol 42:55–86

    PubMed  Google Scholar 

  • de Nys R, Guenther J, Uriz MJ (2010) Natural control of fouling. In: Dürr S, Thomason JC (eds) Biofouling. Wiley-Blackwell, Chichester, pp 109–120

    Google Scholar 

  • de Prijck K, Nelis H, Coenye T (2007) Efficacy of silver-releasing rubber for the prevention of Pseudomonas aeruginosa biofilm formation in water. Biofouling 23:405–411

    PubMed  Google Scholar 

  • Dobretsov S (2009) Inhibition of marine biofouling by biofilms. In: Flemming H-C, Murthy RS, Venkatesan R, Cooksey KE (eds) Marine and industrial biofouling. Springer, Heidelberg, pp 293–314

    Google Scholar 

  • Dow JM, Crossman L, Findlay K, He Y-Q, Feng J-X, Tang J-L (2003) Biofilm dispersal in Xanthomonas campestris is controlled by cell-cell signalling and is required for full virulence to plants. Proc Natl Acad Sci USA 100:10995–11000

    PubMed  CAS  Google Scholar 

  • Edyvean R (2010) Consequences of fouling on shipping. In: Dürr S, Thomason JC (eds) Biofouling. Wiley-Blackwell, Chichester, pp 217–225

    Google Scholar 

  • Eguia E, Truebo A, Rio-Calogne B, Giron A, Amieva JJ, Bielva C (2008) Combined monitor for direct and indirect measurement of biofouling. Biofouling 24:75–86

    PubMed  CAS  Google Scholar 

  • Epstein N (1981) Fouling: technical aspects. In: Somerscales EFC, Knudsen JG (eds) Fouling of heat transfer equipment. Hemisphere, Washington, pp 31–53

    Google Scholar 

  • Fillaudeau L (2003) Fouling phenomena using hot wire methods. In: Heldman D (ed) Encycl Agric Food Biol Eng 56:315–324

    Google Scholar 

  • Finnie AA, Williams DN (2010) Paint and coatings technology for the control of marine fouling. In: Dürr S, Thomason JC (eds) Biofouling. Wiley-Blackwell, Chichester, pp 185–206

    Google Scholar 

  • Flemming H-C (1982) Bacterial growth on ion exchanger resin – investigations with a strong acidic cation exchanger. Part II: Efficacy of silver against aftergrowth during non-operation periods. Z Wasser Abwasser Forsch 15:259–266

    CAS  Google Scholar 

  • Flemming H-C (2002) Biofouling in water systems: cases, causes, countermeasures. Appl Envir Biotechnol 59:629–640

    CAS  Google Scholar 

  • Flemming HC (2003) Role and levels of real time monitoring for successful anti-fouling strategies. Wat Sci Technol 47(5):1–8

    CAS  Google Scholar 

  • Flemming H-C, Cloete TE (2010) Environmental impact of controlling biofouling and biocorrosion in cooling water systems. In: Rajagopal S, Jenner HA, Venugopalan VP (eds) Operational and Environmental Consequences of Large Industrial Cooling Water Systems 365– 380

    Google Scholar 

  • Flemming H-C, Greenalgh M (2009) Concept and consequences of EU biocide guideline. In: Flemming H-C, Venkatesan R, Murthy PS, Cooksey KC (eds) Marine and industrial biofouling. Springer, Heidelberg, pp 189–200

    Google Scholar 

  • Flemming H-C, Ridgway HF (2009) Biofilm control: conventional and alternative approaches. In: Flemming H-C, Venkatesan R, Murthy PS, Cooksey KC (eds) Marine and industrial biofouling. Springer, Heidelberg, pp 103–118

    Google Scholar 

  • Flemming, H.-C. (2008) Biofilms. In: Encyclopedia of life sciences. John Wiley, Chichester http://http://www.els.net/ [DOI: 10.1002/9780470015902.a0000342]

  • Flemming H-C, Wingender J (2003) Biofilms. In: Steinbüchel A (ed) Biopolymers, vol 10. VCH Wiley, Weinheim, pp 209–245

    Google Scholar 

  • Flemming H-C, Wingender J (2010) The biofilm matrix: key for the biofilm mode of life. Nat Rev Microbiol 8:623–633

    PubMed  CAS  Google Scholar 

  • Flemming H-C, Schaule G, McDonogh R, Ridgway HF (1994) Mechanism and extent of membrane biofouling. In: Geesey GG, Lewandowski Z, Flemming H-C (eds) Biofouling and biocorrosion in industrial water systems. Lewis, Chelsea, MI, pp 63–89

    Google Scholar 

  • Flemming H-C, Tamachkiarowa A, Klahre J, Schmitt J (1998) Monitoring of fouling and biofouling in technical systems. Wat Sci Technol 38:291–298

    CAS  Google Scholar 

  • Genzer J, Efimenko K (2006) Recent developments in superhydrophobic surfaces and their relevance to marine fouling: a review. Biofouling 22:339–360

    PubMed  CAS  Google Scholar 

  • Giladi M, Porat Y, Blatt A, Wasserman Y, Kirson ED, Dekel E, Palti Y (2008) Microbial growth inhibition by alternating electric fields. Antimicrob Agents Chemother 52:3517–3522

    PubMed  CAS  Google Scholar 

  • Gilbert P, McBain AJ, Rickard AH (2003) Formation of microbial biofilm in hygienic situations: a problem of control. Int Biodet Biodegr 51:245–248

    Google Scholar 

  • Gray JE, Norton PR, Alnounu R, Marolda CL, Valvano MA, Griffiths K (2003) Biological efficacy of electroless-deposited silver on plasma activated polyurethane. Biomaterials 24:2759–2765

    PubMed  CAS  Google Scholar 

  • Griebe T, Flemming H-C (1998) Biocide-free antifouling strategy to protect RO membranes from biofouling. Desalination 118:153–156

    CAS  Google Scholar 

  • Gu J-D, Belay B, Mitchell R (2001) Protection of catheter surfaces from adhesins of Pseudomonas aeruginosa by a combination of silver ions and lectins. World J Microbiol Biotechnol 17:173–179

    CAS  Google Scholar 

  • Helle H, Vuoriranta P, Välimäki H, Lekkala J, Aaltonen V (2000) Monitoring of biofilm growth with thickness-shear mode quartz resonators in different flow and nutrition conditions. Sens Actuators B Chem 71:47–54

    Google Scholar 

  • Henderson P (2010) Fouling and antifouling in other industries: power stations, desalination plants, drinking water supplies and sensors. In: Dürr S, Thomason JC (eds) Biofouling. Wiley-Blackwell, Chichester, pp 288–305

    Google Scholar 

  • Hermansson M (2000) The DLVO theory in microbial adhesion. Coll Surf B Biointerfaces 14:105–119

    Google Scholar 

  • Hillman RE, Anson D (1985) Biofouling detection monitoring devices: status assessment. New England Marine Research Laboratory, Duxbury, MA, p 119, Ordering address: Research Report Center, P.O. Box 50490, Palo Alto, CA 94303, USA

    Google Scholar 

  • Hoskins BC, Fevang L, Majors PD, Sharma MM, Georgiou G (1999) Selective imaging of biofilms in porous media by NMR relaxation. J Magn Res 139(1):67–73

    CAS  Google Scholar 

  • Howell D, Behrends B (2010) Consequences of antifouoling coatings: the chemist’s perspective. In: Dürr S, Thomason JC (eds) Biofouling. Wiley-Blackwell, Chichester, pp 226–242

    Google Scholar 

  • Hüttinger KJ, Müller H, Bomar MR (1982) Prevention of biodeterioration of cellulose by chemically bound preservatives. Mater Org 17:285–298

    Google Scholar 

  • Ista LK, Pérez-Luna VH, López GP (1999) Surface-grafted, environmentally sensitive polymers for biofilm release. Appl Envir Microbiol 65:1603–1609

    CAS  Google Scholar 

  • Janknecht P, Melo L (2003) Online biofilm monitoring. Rev Envir Sci BioTech 2:269–283

    Google Scholar 

  • Jullien C, Bénézech T, Carpentier B, Lebret V, Faille C (2003) Identification of surface characteristics relevant to the hygienic status of stainless steel for the food industry. J Food Eng 56:77–87

    Google Scholar 

  • Kerr MJ, Cowling CM, Beveridge MJ, Parr ACS, Head DM, Davenport J, Hodkiess T (1998) The early staes of marine biofouling and ist effect on two types of optical sensors. Envir Int 24:331–343

    CAS  Google Scholar 

  • Kilb B, Lange B, Schaule G, Wingender J, Flemming H-C (2003) Contamination of drinking water by coliforms from biofilms grown on rubber-coated valves. Int J Hyg Envir Health 206(6):563–573

    Google Scholar 

  • Klahre J, Flemming H-C (2000) Monitoring of biofouling in papermill water systems. Wat Res 34:3657–3665

    CAS  Google Scholar 

  • Klahre J, Lustenberger M, Flemming H-C (1998) Mikrobielle Probleme bei der Papierfabrikation. Teil III: Monitoring. Papier 52:590–596

    CAS  Google Scholar 

  • Klibanov AM (2007) Permantly microbial materials coatings. J Mat Chem 17:2479–2482

    CAS  Google Scholar 

  • Kolodkin-Gal I, Romero D, Cao S, Clardy J, Kolter R, Losick R (2010) D-amino acids trigger biofilm disassembly. Science 328:627–629

    PubMed  CAS  Google Scholar 

  • Lawrence JR, Swerhone GDW, Neu TR (2000) A simple rotating annular reactor for replicated biofilm studies. J Microb Meth 42:215–224

    CAS  Google Scholar 

  • Leeming K, Moore CP, Denyer SP (2002) The use of immobilized biocides for process water decontamination. Int Biodet Biodegr 49:39–43

    CAS  Google Scholar 

  • Lequette Y, Boels G, Clarisse M, Faille C (2010) Using enzymes to remove biofilms of bacterial isolates sampled in the food-industry. Biofouling 26:421–431

    PubMed  CAS  Google Scholar 

  • Lewis K, Klibanov AM (2005) Surpassing nature: rational design of sterile-surface materials. Trends Biotechnol 23:343–348

    PubMed  CAS  Google Scholar 

  • Little BJ, Lee JS (2007) Microbiologically influenced corrosion. Wiley, Hoboken, NJ

    Google Scholar 

  • Louie JS, Pinnau I, Ciobanu I, Ishida KP, Ng A, Reinhard M (2006) Effects of polyether–polyamide block copolymer coating on performance and fouling of reverse osmosis membranes. J Membr Sci 280:762–770

    CAS  Google Scholar 

  • Madkour M, Ahmad E, Tew GN (2008) Towards self-sterilizing medical devices: controlling infection. Polym Int 57:6–10

    CAS  Google Scholar 

  • Maguire RJ (2000) Review of the persistence, bioaccumulation and toxicity of tributyltin in aquatic environments in relation to Canada’s toxic substances management policy. Water Qual Res J Can 35:633–675

    CAS  Google Scholar 

  • Majumdar P, Lee E, Patel N, Ward K, Stafslien SJ, Daniels J, Chisholm BJ, Boudjouk P, Callow M, Callow J, Thompson S (2008) Combinatorial materials research applied to the development of new surface coatings IX: an investigation of novel antifouling/fouling-release coatings containing quaternary ammonium salt groups. Biofouling 24:185–200

    PubMed  CAS  Google Scholar 

  • Marmur A (2004) The lotus effect: superhydrophobicity and metastability. Langmuir 20:3517–3519

    PubMed  CAS  Google Scholar 

  • Marshall KC, Blainey B (1990) Role of bacterial adhesion in biofilm formation and biocorrosion. In: Flemming HC, Geesey GG (eds) Biofouling and biocorrosion in industrial water systems. Springer, Heidelberg, pp 29–46

    Google Scholar 

  • Marshall KC, Stout R, Mitchell R (1971) Mechanism of the initial events in the sorption of marine bacteria to surfaces. J Gen Microbiol 68:337–348

    CAS  Google Scholar 

  • Mayer C, Moritz R, Kirschner C, Borchard W, Maibaum R, Wingender J, Flemming H-C (1999) The role of intermolecular interactions: studies on model systems for bacterial biofilms. Int J Biol Macromol 26:3–16

    PubMed  CAS  Google Scholar 

  • Meseguer Yebra D, Kiil S, Dam-Johansen K (2004) Antifouling technology: past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog Org Coat 50:75–104

    Google Scholar 

  • Milovic NM, Wang J, Lewis K, Klibanov A (2005) Immobilized N-alkylated polyethylenimine avidly kills bacteria by rupturing cell membranes with no resistance developed. Biotech Bioeng 90:715–722

    CAS  Google Scholar 

  • Mollica A, Cristiani P (2003) On-line biofilm monitoring by “BIOX” electrochemical probe. Wat Sci Tech 47:45–49

    CAS  Google Scholar 

  • Mortimore S (2001) How to make HACCP work in practice. Food Contr 12:209–215

    Google Scholar 

  • Murthy PS, Venkatesan R (2009) Industrial biofilms and their control. In: Flemming H-C, Murthy PS, Venkatesan R, Cooksey KC (eds) Marine and industrial biofouling. Springer, Heidelberg, pp 65–101

    Google Scholar 

  • Nienhuis C, Barthlott W (1997) Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann Bot 79:667–677

    Google Scholar 

  • Nickels J, Bobbie RJ, Lott DF, Maritz RF, Benson PH, White DC (1981) Effect of manual brush cleaning on biomass and community structure of microfouling film formed on aluminium and titanium surfaces exposed to rapidly flowing seawater. Appl Environ Microbiol 41:1442–1453

    PubMed  CAS  Google Scholar 

  • Nivens DE, Palmer RJ, White DC (1995) Continuous nondestructive monitoring of microbial biofilms: a review of analytical techniques. J Ind Microbiol 15:263–276

    CAS  Google Scholar 

  • O’Toole G, Kaplan HB, Kolter R (2000) Biofilm formation as microbial development. Ann Rev Microbiol 54:49–79

    Google Scholar 

  • Oliver JD (2005) The viable but nonculturable state in bacteria. J Microbiol 43:93–100

    PubMed  Google Scholar 

  • Oliver, J.D. (2010) Recent findings on the viable but nonculturable state in pathogenic bacteria. FEMS Microbiol Rev 34:415–425

    Google Scholar 

  • Park D, Wang J, Klibanov AM (2006) One-step painting-like coating procedures to make surfaces highly and permanently biocidal. Biotechnol Prog 22:584–589

    PubMed  CAS  Google Scholar 

  • Parvici J, Antoci V, Hickok NJ, Shapiro IM (2007) Self protective smart orthopaedic implants. Expert Rev Med Dev 4:55–64

    Google Scholar 

  • Patil JS, Kimoto H, Kimoto T, Saino T (2007) Ultraviolet radiation (UV-C): a potential tool for the control of biofouling on marine optical instruments. Biofouling 23:215–230

    PubMed  CAS  Google Scholar 

  • Pereira A, Mendes J, Melo L (2007) Using nanovibrations to monitor biofouling. Biotech Bioeng 99:1407–1414

    Google Scholar 

  • Perez-Roa RE, Tompkins DT, Paulose M, Grimes CA, Anderson MA, Noguera DR (2006) Effects of localized, low-voltage pulsed electric fields on the development and inhibition of Pseudomonas aeruginosa biofilms. Biofouling 22:383–390

    PubMed  Google Scholar 

  • Psoch C, Schwier S (2006) Direct filtration of natural and simulated river water with air sparging and sponge ball application for fouling control. Desalination 197:190–204

    CAS  Google Scholar 

  • Rao TS, Kora AJ, Chandramohan P, Panigrahi BS, Narasimhan SV (2009) Biofouling and microbial corrosion problem in the thermo-fluid heat exchanger and cooling water system of a nuclear test reactor. Biofouling 25:581–591

    PubMed  CAS  Google Scholar 

  • Rompré A, Servais P, Baudart J, de-Roubin M-R, Laurent P (2002) Detection and numeration of coliforms in drinking water: current methods and emerging approaches. J Microbiol Meth 49:31–54

    Google Scholar 

  • Ruseska I, Robbins J, Lashen ES, Costerton JW (1982) Biocide testing against corrosion-causing oilfield bacteria helps control plugging. Oil Gas J 80:253–264

    CAS  Google Scholar 

  • Sand W, Gehrke T (2006) Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria. Res Microbiol 157:49–56

    PubMed  CAS  Google Scholar 

  • Schackenraad JM, Stokroos I, Bartels H, Busscher HJ (1992) Patency of small caliber, superhydrophobic E-PTFE vascular grafts: a pilot study in rabbit carotid artery. Cells Mater 2:193–199

    Google Scholar 

  • Schaule G, Griebe T, Flemming H-C (2000) Steps in biofilm sampling and characterization in biofouling cases. In: Flemming H-C, Szewzyk U, Griebe T (eds) Biofilms. Technomic, Lancaster, pp 1–21

    Google Scholar 

  • Schaule G, Rumpf A, Weidlich C, Mangold K-M, Flemming H-C (2008) The effect of pulsed electric polarization of indium tin oxide (ITO) and polypyrrole on biofilm formation. Wat Sci Technol 58:2165–2172

    CAS  Google Scholar 

  • Schmid T, Helmbrecht C, Panne U, Haisch C, Niessner R (2003) Process analysis of biofilms by photoacoustic spectroscopy. Anal Bioanal Chem 375:1124–1129

    PubMed  CAS  Google Scholar 

  • Schmid T, Panne U, Adams J, Niessner R (2004) Investigation of biocide efficacy by photoacoustic spectroscopy. Wat Res 38:1189–1196

    CAS  Google Scholar 

  • Schopf JW, Hayes JM, Walter MR (1983) Evolution on earth’s earliest ecosystems: recent progress and unsolved problems. In: Schopf JW (ed) Earth’s earliest biosphere. Princeton University Press, New Jersey, pp 361–384

    Google Scholar 

  • Schulte S (2003) Wirksamkeit von Wasserstoffperoxid gegenüber Biofilmen. Ph.D. dissertation, University of Duisburg-Essen, Germany

    Google Scholar 

  • Schulte S, Wingender J, Flemming H-C (2005) Efficacy of biocides against biofilms. In: Paulus W (ed) Directory of microbicides for the protection of materials and processes. Kluwer Academic, Doordrecht, The Netherlands, pp 90–120, Chapter 6

    Google Scholar 

  • Schultz MP (2007) Effects of coating roughness and biofouling on ship resistance and powering. Biofouling 23:331–341

    PubMed  Google Scholar 

  • Silver S (2003) Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev 27:341–353

    PubMed  CAS  Google Scholar 

  • Stancak M (2004) Biofouling: it’s not just barnacles any more. http://www.csa.com/discoveryguides/biofoul/overview.php

  • Sunada K, Watanabe T, Hashimoto K (2003) Studies on photokilling of bacteria by TiO2 thin film. J Photochem Photobiol A 156:227–233

    CAS  Google Scholar 

  • Tamachkiarow A, Flemming H-C (2003) On-line monitoring of biofilm formation in a brewery water pipeline system with a fibre optical device (FOS). Wat Sci Tech 47(5):19–24

    CAS  Google Scholar 

  • Tait K, Skillman LC, Sutherland IW (2002) The efficacy of bacteriophate as a method of biofilm eradication. Biofouling 18:305–311

    Google Scholar 

  • Ten Hallers-Tjabbes CC, Walmsley S (2010) Consequences of antifouling systems: an environmental perspective. In: Dürr S, Thomason JC (eds) Biofouling. Wiley-Blackwell, Chichester, pp 243–251

    Google Scholar 

  • Terlezzi A, Conte E, Zupo V, Mazzella L (2000) Biological succession on silicone fouling-release surfaces: long term exposure tests in the harbour of Ischia, Italy. Biofouling 15:327–342

    Google Scholar 

  • Tiller JC, Lee SB, Lewis K, Klibanov AM (2002) Polymer surfaces derivatized with poly(vinyl-N-hexylpyridinium) kill airborne and waterborne bacteria. Biotechnol Bioeng 79:465–471

    PubMed  CAS  Google Scholar 

  • Turley PA, Fenn RJ, Ritter JC, Callow ME (2005) Pyrithiones as antifoulants: environmental fate and loss of toxicity. Biofouling 21:31–40

    PubMed  CAS  Google Scholar 

  • Van der Oost R, Beyer J, Vermeulen NPE (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13:57–149

    PubMed  Google Scholar 

  • Van Gulck JF, Rowe RK, Rittmann BE, Cooke AJ (2003) Predicting biogeochemical calcium precipitation in landfill leachate collection systems. Biodegradation 14:331–346

    Google Scholar 

  • Verran J, Jones M (2000) Problems of biofilms in the food and beverage industry. In: Walker J, Surmann S, Jass J (eds) Industrial biofouling detection, prevention and control. Wiley, Chichester, UK, pp 145–173

    Google Scholar 

  • Vladkova T (2009) Surface modification approach to control biofouling. In: Flemming HC, Murthy PS, Venkatesan R, Cooksey KC (eds) Industrial and marine biofouling. Springer, Heidelberg, pp 135–163

    Google Scholar 

  • Von der Schulenburg DA, Akpa BS, Gladden LF, Johns ML (2008) Non-invasive mass transfer measurements in complex biofilm-coated structures. Biotech Bioeng 101:602–608

    Google Scholar 

  • Vrouwenvelder JS, Bakker SM, Wessels LP, van Paassen JAM (2006) The membrane fouling simulator as a new tool for biofouling control of spiral wound membranes. Desalination 204:170–174

    Google Scholar 

  • Wagner M, Ivleva NP, Haisch C, Niessner R, Horn H (2009) Combined use of confocal laser scanning microscopy (CLSM) and Raman microscopy (RM): investigations on EPS-matrix. Wat Res 43:63–76

    CAS  Google Scholar 

  • Webb J, Thompson LS, James S, Charlton T, Tolker-Nielsen T, Koch B, Givskov M, Kjelleberg S (2003) Cell death in Pseudomonas aeruginosa biofilm development. J Bacteriol 185:4585–4592

    PubMed  CAS  Google Scholar 

  • Webster DC, Chisholm BJ (2010) New directions in antifouling technology. In: Dürr S, Thomason JC (eds) Biofouling. Wiley-Blackwell, Chichester, pp 366–387

    Google Scholar 

  • Wetegrove RL (1998) Monitoring of film forming living deposits. US Patent No. 5,796,478

    Google Scholar 

  • Wetegrove RL, Banks R (1993) Monitoring film fouling in a process stream with a transparent shunt and a light detecting means. US Patent No. 5,185,533

    Google Scholar 

  • White DC, Arrage AA, Nivens DE, Palmer RJ, Rice JF, Sayler GS (1996) Biofilm ecology: on-line methods bring new insights into MIC and microbial biofouling. Biofouling 10:3–16

    PubMed  CAS  Google Scholar 

  • Whitehead KA, Verran J (2009) The effect of substratum properties on the survival of attached microorganisms on inert surfaces. In: Flemming H-C, Murthy PS, Venkatesan R, Cooksey KC (eds) Marine and industrial biofouling, Springer series on biofilms. Springer, Heidelberg, pp 13–33

    Google Scholar 

  • Wingender J, Flemming H-C (2004) Contamination potential of drinking water distribution network biofilms. Wat Sci Tech 49:277–285

    CAS  Google Scholar 

  • Wirtanen G, Salo S (2003) Disinfection in food processing: efficacy testing of disinfectants. Rev Environ Sci Biotechnol 2:293–306

    CAS  Google Scholar 

  • Wloka M, Rehage H, Flemming H-C, Wingender J (2006) Structure and rheological behaviour of the extracellular polymeric substance network of mucoid Pseumonas aeruginosa biofilms. Biofilms 2:275–283

    Google Scholar 

  • Wood P, Jones M, Bhako M, Gilbert P (1996) A novel strategy for control of microbial biofilms through generation of biocide at the biofilm-surface interface. Appl Envir Microbiol 62:2598–2602

    CAS  Google Scholar 

  • Wu Z, Chen H, Dong Y, Mao H, Sun J, Chen S, Craig VSJ, Hu J (2008) Cleaning using nanobubbles: defouling by electrochemical generation of bubbles. Coll Mat 328:10–14

    CAS  Google Scholar 

  • Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395

    PubMed  CAS  Google Scholar 

  • Zhao Q, Liu Y, Müller-Steinhagen HM (2002) Effects of interaction energy on biofouling adhesion. In: Proceedings of the conference on fouling, cleaning and desinfection in food processing, Cambridge University, pp 41–47

    Google Scholar 

  • Zinn MS, Kirkegaard DR, Palmer RJ, White DC (1999) Laminar flow chamber for continuous monitoring of biofilm formation and succession. Biofilms 310:224–232

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Curt Flemming .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Flemming, HC. (2011). Microbial Biofouling: Unsolved Problems, Insufficient Approaches, and Possible Solutions. In: Flemming, HC., Wingender, J., Szewzyk, U. (eds) Biofilm Highlights. Springer Series on Biofilms, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19940-0_5

Download citation

Publish with us

Policies and ethics