Skip to main content

Zebrafish as a Suitable Model for Evaluating Nanocosmetics and Nanomedicines

  • Chapter
Nanocosmetics and Nanomedicines

Abstract

The assessment of complex in vivo phenotypes using the teleost zebrafish provides an alternative tool to combine detailed toxicological studies with the large-scale screening of chemicals. The zebrafish, Danio rerio, represents a versatile model organism with many molecular, morphological, and physiological similarities to mammals. It is well suited for studies in genetics, embryology, development, and cell biology, and, in recent years, it has become an important vertebrate model for small molecule studies. Several characteristics contribute to the growing interest in this tropical fish for high-throughput screening such as its small size, high reproductive capacity, accessibility for genetic manipulation, optical transparency which allows visual assessment of developing cells and organs, suitability for treatment by water exposure, low maintenance costs, and a large and growing biological database. In the present chapter, we outline the use of the zebrafish in biomaterial nanotoxicity studies and the potential of this model for the phenotype-based screening of skin care products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jones, C., Grainger, D.W.: In vitro assessments of nanomaterial toxicity. Adv. Drug Deliv. Rev. 61, 438–456 (2009)

    Article  CAS  Google Scholar 

  2. Fischer, H.C., Chan, W.C.: Nanotoxicity: the growing need for in vivo study. Curr. Opin. Biotechnol. 18, 565–571 (2007)

    Article  CAS  Google Scholar 

  3. Hillegass, J.M., Shukla, A., Lathrop, S.A., MacPherson, M.B., Fukagawa, N.K., Mossman, B.T.: Assessing nanotoxicity in cells in vitro. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2, 219–231 (2010)

    Article  CAS  Google Scholar 

  4. Aillon, K.L., Xie, Y., El-Gendy, N., Berkland, C.J., Forrest, M.L.: Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv. Drug. Deliv. Rev. 61, 457–466 (2009)

    Article  CAS  Google Scholar 

  5. Hillegass, J.M., Shukla, A., Lathrop, S.A., MacPherson, M.B., Fukagawa, N.K., Mossman, B.T.: Assessing nanotoxicity in cells in vitro. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2, 219–231 (2010)

    Article  CAS  Google Scholar 

  6. Zon, L.I., Peterson, R.T.: In vivo drug discovery in the zebrafish. Nat. Rev. Drug. Discov. 4, 35–44 (2005)

    Article  CAS  Google Scholar 

  7. Froehlicher, M., Liedtke, A., Groh, K.J., Neuhauss, S.C., Segner, H., Eggen, R.I.: Zebrafish (Danio rerio) neuromast: promising biological endpoint linking developmental and toxicological studies. Aquat. Toxicol. 95, 307–319 (2009)

    Article  CAS  Google Scholar 

  8. Hao, J., Ho, J., Lewis, J., Karim, K., Daniels, R., Gentry, P., Hopkins, C., Lindsley, C., Hong, C.: In vivo structure-activity relationship study of dorsomorphin analogues identifies selective VEGF and BMP inhibitors. ACS Chem. Biol. 4 (2010), doi:10.1021/cb9002865

    Google Scholar 

  9. Truong, L., Moody, I.S., Stankus, D.P., Nason, J.A., Lonergan, M.C., Tanguay, R.L.: Differential stability of lead sulfide nanoparticles influences biological responses in embryonic zebrafish. Arch. Toxicol. (2010), doi:10.1007/s00204-010-0627-4

    Google Scholar 

  10. Mayden, R.L., Tang, K.L., Conway, K.W., Freyhof, J., Chamberlain, S., Haskins, M., Schneider, L., Sudkamp, M., Wood, R.M., Agnew, M., Bufalino, A., Sulaiman, Z., Miya, M., Saitoh, K., He, S.: Phylogenetic relationships of Danio within the order Cypriniformes: a framework for comparative and evolutionary studies of a model species. J. Exp. Zool. B Mol. Dev. Evol. 308, 642–654 (2007)

    Article  Google Scholar 

  11. Spencer, R., Gerlach, G., Lawrence, C., Smith, C.: The behaviour and ecology of the zebrafish, Danio rerio. Biol. Rev. Camb. Philos. Soc. 83, 13–34 (2008)

    Google Scholar 

  12. Laale, H.W.: The biology and use of zebrafish, Brachydanio rerio in fisheries research. A literature review. J. Fish. Biol. 10, 121–173 (1977)

    Google Scholar 

  13. Barman, R.P.: A taxonomic revision of the Indo-Burmese species of Danio rerio. Record Zool. Surv. India Occas. Pap. 137, 1–91 (1991)

    Google Scholar 

  14. Darrow, K.O., Harris, W.A.: Characterization and development of courtship in zebrafish, Danio rerio. Zebrafish 1, 40–45 (2004)

    Article  Google Scholar 

  15. Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B., Schilling, T.F.: Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253–310 (1995)

    Article  CAS  Google Scholar 

  16. Spence, R., Smith, C.: The role of early learning in determining social preferences based on visual cues in the zebrafish, Danio rerio. Ethology 113, 62–67 (2007)

    Article  Google Scholar 

  17. Streisinger, G., Walker, C., Dower, N., Knauber, D., Singer, F.: Production of clones of homozygous diploid zebra fish (Brachydanio rerio). Nature 291, 293–296 (1981)

    Article  CAS  Google Scholar 

  18. Müller, F., Blader, P., Strähle, U.: Search for enhancers: teleost models in comparative genomic and transgenic analysis of cis regulatory elements. Bioessays 24, 564–572 (2002)

    Article  Google Scholar 

  19. Amatruda, J.F., Patton, E.E.: Genetic models of cancer in zebrafish. Int. Rev. Cell. Mol. Biol. 271, 1–34 (2008)

    Article  CAS  Google Scholar 

  20. Kinkel, M.D., Prince, V.E.: On the diabetic menu: zebrafish as a model for pancreas development and function. Bioessays 31, 139–152 (2009)

    Article  CAS  Google Scholar 

  21. Chico, T.J., Milo, M., Crossman, D.C.: The genetics of cardiovascular disease: new insights from emerging approaches. J. Pathol. 220, 186–197 (2010)

    CAS  Google Scholar 

  22. Sager, J., Bai, Q., Burton, E.A.: Transgenic zebrafish models of neurodegenerative diseases. Brain. Struct. Funct. 214, 285–302 (2010)

    Article  Google Scholar 

  23. den Hertog, J.: Chemical genetics: Drug screens in Zebrafish. Biosci. Rep. 25, 289–297 (2005)

    Article  CAS  Google Scholar 

  24. McGrath, P., Li, C.Q.: Zebrafish: a predictive model for assessing drug-induced toxicity. Drug. Discov. Today 13, 394–401 (2008)

    Article  CAS  Google Scholar 

  25. Berghmans, S., Butler, P., Goldsmith, P., Waldron, G., Gardner, I., Golder, Z., Richards, F.M., Kimber, G., Roach, A., Alderton, W., Fleming, A.: Zebrafish based assays for the assessment of cardiac, visual and gut function-potential safety screens for early drug discovery. J. Pharmacol. Toxicol. Methods 58, 59–68 (2008)

    Article  CAS  Google Scholar 

  26. Rawson, D.M., Zhang, T., Kalicharan, D., Jongebleod, W.L.: Field emission scanning electron microscopy and transmission electron microscopy studies of the chorion, plasmamembrane and syncytial layers of the gastrula-stage embryo of the zebrafish Brachydanio rerio: a consideration of structural and functional relationships with respect to cytoprotectant penetration. Aquac. Res. 31, 325–336 (2000)

    Article  Google Scholar 

  27. Peterson, R.T., Link, B.A., Dowling, J.E., Schreiber, S.L.: Small molecule developmental screens reveal the logic and timing of vertebrate development. Proc. Natl. Acad. Sci. USA 97, 12965–12969 (2000)

    Article  CAS  Google Scholar 

  28. Heiden, T., Dengler, E., Kao, W., Heideman, W., Peterson, R.: Developmental toxicity of lowgeneration PAMAM dendrimers in zebrafish. Toxicol. Appl. Pharmacol. 225, 70–79 (2007)

    Article  Google Scholar 

  29. Henry, T.B., Menn, F.M., Fleming, J.T., Wilgus, J., Compton, R.N., Sayler, G.S.: Attribuiting effects of aqueous C60 nanoaggregates to tetrahydrofuran decomposition products in larval zebrafish by assessment of gene. Environ. Health Perspect. 115, 1059–1065 (2007)

    Article  CAS  Google Scholar 

  30. Cheng, J., Chan, C.M., Veca, L.M., Poon, W.L., Chan, P.K., Qu, L., Sun, Y.P., Cheng, S.H.: Acute and long-term effects after single loading of functionalized multi-walled carbon nanotubes into zebrafish (Danio rerio). Toxicol. Appl. Pharmacol. 235(2), 216–225 (2009)

    Article  CAS  Google Scholar 

  31. Sinha, R.P., Häder, D.P.: UV-induced DNA damage and repair: a review. Photochem. Photobiol. Sci. 1, 225–236 (2002)

    Article  CAS  Google Scholar 

  32. Choi, T.Y., Kim, J.H., Ko, D.H., Kim, C.H., Hwang, J.S., Ahn, S., Kim, S.Y., Kim, C.D., Lee, J.H., Yoon, T.J.: Zebrafish as a new model for phenotype-based screening of melanogenic regulatory compounds. Pigment. Cell. Res. 20, 120–127 (2007)

    Article  CAS  Google Scholar 

  33. Choi, T.Y., Sohn, K.C., Kim, J.H., Kim, S.M., Kim, C.H., Hwang, J.S., Lee, J.H., Kim, C.D., Yoon, T.J.: Impact of NAD(P)H:quinone oxidoreductase-1 on pigmentation. J. Invest. Dermatol. 130, 784–792 (2010)

    Article  CAS  Google Scholar 

  34. Zhu, X., Zhu, L., Duan, Z., Qi, R., Li, Y., Lang, Y.: Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to zebrafish (Danio rerio) early developmental stage. J. Environ. Sci. Health A: Toxicol. Hazard Subst. Environ. Eng. 43, 278–284 (2008)

    CAS  Google Scholar 

  35. Griffitt, R.J., Hyndman, K., Denslow, N.D., Barber, D.S.: Comparison of molecular and histological changes in zebrafish gills exposed to metallic nanoparticles. Toxicol. Sci. 107, 404–415 (2009)

    Article  CAS  Google Scholar 

  36. Lanone, S., Boczkowski, J.: Biomedical applications and potential health risks of nanomaterials: molecular mechanisms. Curr. Mol. Med. 6, 651–663 (2006)

    Article  CAS  Google Scholar 

  37. Giacomoni, P.U., Teta, L., Najdek, L.: Sunscreens: the impervious path from theory to practice. Photochem. Photobiol. Sci. 9, 524–529 (2010)

    Article  CAS  Google Scholar 

  38. Arbogast, J.W., Darmanyan, A.P., Foote, C.S., Rubin, Y., Diederich, F.N., Alvarez, M.M., Anz, S.J., Whetten, R.L.: Photophysical properties of C60. J. Phys. Chem. 95, 11–12 (1991)

    Article  CAS  Google Scholar 

  39. Usenko, C.Y., Harper, S.L., Tanguay, R.L.: Fullerene C60 exposure elicits an oxidative stress response in embryonic zebrafish. Toxicol. Appl. Pharmacol. 229, 44–55 (2008)

    Article  CAS  Google Scholar 

  40. Usenko, C.Y., Harper, S.L., Tanguay, R.L.: In vivo evaluation of carbon fullerene toxicity using embryonic zebrafish. Carbon. N Y 45, 1891–1898 (2007)

    Article  CAS  Google Scholar 

  41. Lin, J.Y., Tournas, J.A., Burch, J.A., Monteiro-Riviere, N.A., Zielinski, J.: Topical isoflavones provide effective photoprotection to skin. Photodermatol. Photoimmunol. Photomed. 24, 61–66 (2008)

    Article  Google Scholar 

  42. Katiyar, S.K., Elmets, C.A.: Green tea polyphenolic antioxidants and skin photoprotection. Int. J. Oncol. 18, 1307–1313 (2001)

    CAS  Google Scholar 

  43. Katiyar, S.K., Mukhtar, H.: Green tea polyphenol (−)-epigallocatechin-3-gallate treatment to mouse skin prevents UVB-induced infiltration of leukocytes, depletion of antigen-presenting cells, and oxidative stress. J. Leukoc. Biol. 69, 719–726 (2001)

    CAS  Google Scholar 

  44. Wang, Y.H., Wen, C.C., Yang, Z.S., Cheng, C.C., Tsai, J.N., Ku, C.C., Wu, H.J., Chen, Y.H.: Development of a whole-organism model to screen new compounds for sun protection. Biotechnol. NY 11, 419–429 (2009)

    CAS  Google Scholar 

  45. Durán, N., Justo, G.Z., Ferreira, C.V., Silva, R.A., Machado, D., Shishido, S.M., Teixeira, Z., Den Hertog, J.: Cellular and molecular approaches to in vitro and in vivo assessment of preliminary toxicological and biological activities of nanomaterials. Nanotoxicology 2 (S1),S82 (2008)

    Google Scholar 

  46. McEwen, C.N., McKay, R.G., Larsen, B.S.: C60 as a radical sponge. J. Am. Chem. Soc. 114, 4412–4414 (1992)

    Article  CAS  Google Scholar 

  47. Lens, M.: Use of fullerenes in cosmetics. Recent Pat. Biotech. 3, 118–123 (2009)

    Article  CAS  Google Scholar 

  48. Teixeira, Z., Zanchetta, B., Melo, B.A., Oliveira, L.L., Santana, M.H., Paredes-Gamero, E.J., Justo, G.Z., Nader, H.B., Guterres, S.S., Durán, N.: Retinyl palmitate flexible polymeric nanocapsules: Characterization and permeation studies. Colloids Surf. B Biointerfaces 81, 374–380 (2010)

    Article  CAS  Google Scholar 

  49. Gerhard, G.S.: Small laboratory fish as models for aging research. Ageing Res. Rev. 6, 64–72 (2007)

    Article  Google Scholar 

  50. Eimon, P.M., Ashke, A.: The zebrafish as a model organism for the study of apoptosis. Apoptosis 15, 331–349 (2010)

    Article  Google Scholar 

  51. Forné, I., Abián, J., Cerdà, J.: Fish proteome analysis: Model organisms and non-sequenced species. Proteomics 10, 858–872 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ferreira, C.V., Sartori-da-Silva, M.A., Justo, G.Z. (2011). Zebrafish as a Suitable Model for Evaluating Nanocosmetics and Nanomedicines. In: Beck, R., Guterres, S., Pohlmann, A. (eds) Nanocosmetics and Nanomedicines. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19792-5_12

Download citation

Publish with us

Policies and ethics