Skip to main content

Nucleotide Metabolism

  • Chapter
  • First Online:
Essentials of Biochemistry

Abstract

Nucleotide metabolism occurs in all living organisms. The most prominent biomolecule, in terms of the number of reactions that it participates in, is the nucleotide, ATP. Although nucleotide metabolism is universal, it does differ to some extent in different organisms, e.g., the enzymes of purine nucleotide biosynthesis are separate enzymes in Escherichia coli, whereas some of these same enzymes are part of dual-functional proteins in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stevens RC, Lipscomb WN (1992) A molecular mechanism for pyrimidine nucleotide control of aspartate transcarbamoylase. Proc Natl Acad Sci USA 89:5281–5285

    Article  PubMed  CAS  Google Scholar 

  2. Portet RW, Modebe MO, Stark GR (1969) Kinetic studies of the catalytic subunit. J Biol Chem 244:1846–1859

    Google Scholar 

  3. Parmentier LE, Weiss PM, O’Leary MH, Schachman HK, Cleland WW (1992) 13C and 15N isotope effects as a probe of the chemical mechanism of Escherichia coli aspartate transcarbamoylase. Biochemistry 31:6577–6584

    Article  PubMed  CAS  Google Scholar 

  4. Kornberg A (1955) Enzymatic synthesis of pyrimidine nucleotides:orotidine-5′-phosphate and uridine-5′-phosphate. J Biol Chem 215:403–451

    PubMed  Google Scholar 

  5. Goiten RK, Chelsky D, Parsons SM (1978) Primary 14C and α secondary 3H substrate kinetic isotope effects for some phosphoribosyltransferases. J Biol Chem 253:2963–2971

    Google Scholar 

  6. Appleby TC, Kinsland C, Begley TP, Ealick SE (2000) The crystal structure and mechanism of orotidine 5′-monophosphate decarboxylase. Proc Natl Acad Sci USA 97:2005–2010

    Article  PubMed  CAS  Google Scholar 

  7. Gerhart JC, Pardee AB (1962) The enzymology of control by feedback inhibition. J Biol Chem 237:891–896

    PubMed  CAS  Google Scholar 

  8. Buchanan JM (1994) Aspects of nucleotide enzymology and biology. Protein Sci 3:2151–2157

    Article  PubMed  CAS  Google Scholar 

  9. Buchanan JM, Sonne JC, Delluva AM (1948) Biological precursors of uric acid: the role of lactate, glycine, and carbon dioxide as precursors of the carbon chain and nitrogen atom 7 of uric acid. J Biol Chem 173:81–98

    PubMed  CAS  Google Scholar 

  10. Sonne JC, Buchanan JM, Delluva AM (1948) Biological precursors of uric acid: the role of lactate, acetate, and formate in the synthesis of the ureido groups uric acid. J Biol Chem 173:69–79

    PubMed  CAS  Google Scholar 

  11. Bass MB, Fromm HJ, Rudolph FB (1984) The mechanism of the adenylosuccinate synthetase reaction as studied by positional exchange. J Biol Chem 259:12330–12333

    PubMed  CAS  Google Scholar 

  12. Kornberg A, Lieberman I, Simms ES (1955) Enzymatic synthesis of purine nucleotides. J Biol Chem 215:417–427

    PubMed  CAS  Google Scholar 

  13. Ginder ND, Binkowski DJ, Fromm HJ, Honzatko RB (2006) Nucleotide complexes of Escherichia coli phosphoribosylaminoimidazolesuccino-carboxamide synthetase. J Biol Chem 281:20680–20688

    Article  PubMed  CAS  Google Scholar 

  14. Vergis JM, Beardsley GP (2004) Catalytic mechanism of the cyclohydrolase activity of human aminoimidazole carboxamide ribonucleotide formy-transferase/inosine monophosphate cyclohydrolase. Biochemistry 43:1184–1192

    Article  PubMed  CAS  Google Scholar 

  15. Zhang Y, Morar M, Ealick SE (2008) Structural biology of the purine biosynthetic pathway. Cell Mol Life Sci 65:3699–3724

    Article  PubMed  CAS  Google Scholar 

  16. Jordan A, Reichard P (1998) Ribonucleotide reductases. Annu Rev Biochem 67:71–98

    Article  PubMed  CAS  Google Scholar 

  17. Carreras CW, Santi DV (1995) The catalytic mechanism and structure of thymidylate synthase. Annu Rev Biochem 64:721–762

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fromm, H.J., Hargrove, M.S. (2012). Nucleotide Metabolism. In: Essentials of Biochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19624-9_14

Download citation

Publish with us

Policies and ethics