Skip to main content

Dynamic VDD Switching Technique and Mapping Optimization in Dynamically Reconfigurable Processor for Efficient Energy Reduction

  • Conference paper
Reconfigurable Computing: Architectures, Tools and Applications (ARC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6578))

Included in the following conference series:

Abstract

This paper describes a dynamic VDD switching technique to reduce energy dissipation of Dynamically Reconfigurable Processors. Either high or low supply is dynamically selected at each PE at the context-by-context basis. We designed a part of a PE array and applied this technique. A test chip fabricated in 65nm technology operated successfully. Detailed simulations revealed that energy reduction is hindered by energy overhead due to supply switching when we use even lower VDD. We propose a mapping optimization algorithm “PFCM” to minimize the overhead. PFCM reduced energy overhead by 90.8% and thereby the dynamic VDD switching technique reduced energy dissipation by up to 12.5% when running sepia filter, alpha blender and Laplacian filter programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Motomura, M.: STP Engine, a C-based Programmable HW Core featuring Massively Parallel and Reconfigurable PE Array: its Architecture, Tool, and System Implications. In: Prof. of CoolChips XII (2009)

    Google Scholar 

  2. Amano, H., Hasegawa, Y., Tsutsumi, S., Nakamura, T., Nisimura, T., Tunbunheng, V., Parimala, A., Sano, T., Kato, M.: MuCCRA Chips: Configurable Dynamically-Reconfigurable Processors. In: Proc. of ASSCC, pp. 384–387 (2007)

    Google Scholar 

  3. Veradas, F.J., Scheppler, M., Moffat, W., Mei, B.: Custom Implementation of the Coarse-Grained Reconfigurable ADRES architecture for multimedia Purposes. In: Proc. of International Conference on Field Programmable Logic and Applications (FPL 2005), pp. 106–111 (2005)

    Google Scholar 

  4. Ebeling, C., Cronquist, D.C., Franklin, P.: RaPiD - Reconfigurable Pipelined Datapath. In: International Workshop on Field-Programmable Logic and Applications, pp. 126–135. Springer, Berlin (1996)

    Google Scholar 

  5. Vijaykrishnan, G.L., et al.: A Dual-VDD Low Power FPGA Architecture. In: Becker, J., Platzner, M., Vernalde, S. (eds.) FPL 2004. LNCS, vol. 3203, pp. 145–157. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Chow, C.T., et al.: Dynamic Voltage Scaling for Commercial FPGAs. In: IEEE Int. Conf. on Field Programmable Technology (ICFPT), pp. 173–180 (2005)

    Google Scholar 

  7. Li, F., et al.: Low-Power FPGA Using Pre-defined Dual-Vdd/Dual-Vt Fabrics. In: Proc. of 2004 ACM/SIGDA 12th Int. Symp. on Field Programmable Gate Arrays (FPGA), February, pp. 42–50 (2004)

    Google Scholar 

  8. Tran, C.Q., et al.: Low-Power Low-Leakage FPGA Design using Zigzag power-gating, dual-VTH/VDD and micro-VDD-hopping. IEICE Trans. Electron E89-C(3), 280–286 (2006)

    Article  Google Scholar 

  9. Schweizer, T., et al.: Exploiting Slack Time in Dynamically Reconfigurable Processor Architectures. In: Proc. of IEEE Int. Conf. on Field Programmable Technology (ICFPT), pp. 381–384 (December 2007)

    Google Scholar 

  10. Saito, Y., et al.: Leakage Power Reduction for Coarse Grain Dynamically Reconfigurable Processor Arrays With Fine-Grained Power Gating Technique. In: Int. Conf. on Field Programmable Technology (ICFPT), pp. 329–332 (December 2008)

    Google Scholar 

  11. Umahashi, Y., et al.: Power Reduction Technique for Dynamic Reconfigurable Processors with Dynamic Assignment of Dual Supply Voltages. In: ITC-CSCC 2008 (2008)

    Google Scholar 

  12. Kimura, M., et al.: Low Power Image Processing using MuCCRA-3: A Dynamically Reconfigurable Processor Array. In: Proc. of Int. Conf. on Field Programmable Technology (December 2009)

    Google Scholar 

  13. Tran, C.Q., Kawaguchi, H., Sakurai, T.: Low-power High-speed Level Shifter Design for Block-level Dynamic Voltage Scaling Environment. In: IEEE International Conference on Integrated Circuit Design and Technology, Texas, USA, vol. 1, pp. 229–232 (May 2005)

    Google Scholar 

  14. Mei, B., et al.: DRESC: a retargetable compiler for coarse-grained reconfigurable architectures. In: Proc. of FPT 2002, pp. 155–173 (December 2002)

    Google Scholar 

  15. Tunbunheng, V., Amano, H.: Black-Diamond: a Retargetable Compiler Using Graph with Configuration Bits for Dynamically Reconfigurable Architectures. In: Proc. of The 14th Workshop on Synthesis And System Integration of Mixed Information Technologies (SASIMI), pp. 412–419 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yamamoto, T., Hironaka, K., Hayakawa, Y., Kimura, M., Amano, H., Usami, K. (2011). Dynamic VDD Switching Technique and Mapping Optimization in Dynamically Reconfigurable Processor for Efficient Energy Reduction. In: Koch, A., Krishnamurthy, R., McAllister, J., Woods, R., El-Ghazawi, T. (eds) Reconfigurable Computing: Architectures, Tools and Applications. ARC 2011. Lecture Notes in Computer Science, vol 6578. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19475-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19475-7_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19474-0

  • Online ISBN: 978-3-642-19475-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics