Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

Optical detectors are applied in all fields of human activities from basic research to commercial applications in communication, automotive, medical imaging, homeland security, and other fields. The processes of light interaction with matter described in other chapters of this handbook form the basis for understanding the optical detectors physics and device properties.

This chapter starts with a brief historical sketch of first experiments facilitating development of optical detectors. The overview of photo detector types is followed by the description of the most important properties and different detection regimes.

A detailed description of different types of optical detectors is presented in the following sections. The device structure and physics as well as important materials for fabrication, figures of merit, and brief application notes are given for photoconductors, photodiodes, quantum well photodetectors, semiconductor detectors with intrinsic amplification, charge transfer detectors, photoemissive detectors, and thermal photodetectors. The chapter includes also a brief overview of imaging systems, principles of black and white and color photography, and recent developments in polymer-, hybrid-, and nanotechnology-based optical detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-D:

two-dimensional

APD:

avalanche photodiode

BLIP:

background-limited infrared photodetector

CCD:

charge-coupled device

CCIS:

charge-coupled image sensor

CM:

carrier multiplication

CMOS:

complementary metal–oxide–semiconductor detector

CTIS:

charge transfer image sensor

DEPFET:

depleted field effect transistor structure

DQE:

detective quantum efficiency

EQE:

external quantum efficiency

FET:

field effect transistor

FTF:

Fourier-transform function

FWHM:

full width at half-maximum

HOMO:

highest occupied molecular orbital

IR:

infrared

ITO:

indium–tin oxide

LIDAR:

light detecting and ranging

LSP:

localized surface plasmon

LUMO:

lowest unoccupied molecular orbital

LWIR:

long-wavelength IR

LiF:

lithium fluoride

MCP:

microchannel plate

MCT:

mercury cadmium telluride

MESFET:

metal semiconductor field-effect transistor

MIS:

metal–insulator–semiconductor

MOS:

metal–oxide–semiconductor

MOSFET:

metal?oxide?semiconductor field-effect transistor

MSM:

metal–semiconductor–metal

MTF:

modulation transfer function

NEP:

noise equivalent power

NIR:

near infrared

OD:

optical density

OD:

output diode

P3HT:

poly(3-hexylthiophene)

PDE:

photon-detection efficiency

PIR:

passive infrared detector

PMT:

photomultiplier tube

PPV:

poly-para-phenylenevinylene

PTCBI:

polymer 3,4,9,10-perylenetetracarboxylic bis-benzimidazole

QDIP:

quantum-dot infrared photodetector

QE:

quantum efficiency

QWIP:

quantum well infrared photodetector

RF:

radio frequency

SNSPD:

superconducting nanowire single-photon detector

SOI:

silicon-on-insulator

SPP:

surface plasmon polariton

SiPM:

silicon photomultiplier

TGS:

triglycerine sulfate

TO:

thermooptic

TO:

topology optimization

TV:

television

UV:

ultraviolet

References

  1. D. Wood: Optoelectronic Semiconductor Devices (Prentice Hall, New York 1994)

    Google Scholar 

  2. E.L. Dereniak, G.D. Boreman: Infrared Detectors and Systems (John Wiley & Sons, New York Chichester Brisbane Toronto Singapore 1996)

    Google Scholar 

  3. E.L. Dereniak, D.G. Crowe: Optical radiation detectors (John Wiley & Sons, New York, Chichester, Brisbane, Toronto, Singapore 1984)

    Google Scholar 

  4. D.L. Smith: Theory of generation-recombination noise in intrinsic photoconductors, J. Appl. Phys. 53, 7051 (1982)

    ADS  Google Scholar 

  5. T.S. Moss, G.J. Burrell, B. Elis: Semiconductor Opto-electronics (Butterworth, London 1973)

    Google Scholar 

  6. S.M. Sze: Physics of Semiconductor Devices (John Wiley & Sons, New York, Chichester, Brisbane, Toronto, Singapore 1981)

    Google Scholar 

  7. J. Geist: Quantum efficiency of the p-n junction in silicon as an absolute radiometric standard, Appl. Opt. 18, 760–762 (1979)

    ADS  Google Scholar 

  8. C. Hicks, M. Kalatsky, R.A. Metzler, A.O. Goushcha: Quantum efficiency of silicon photodiodes in the near infrared spectral range, Appl. Opt. 42(22), 4415–4422 (2003)

    ADS  Google Scholar 

  9. A.O. Goushcha, R.A. Metzler, C. Hicks, V.N. Kharkyanen, N.M. Berezetska: Determination of the carrier collection efficiency function of Si photodiode using spectral sensitivity measurements, Semiconductor Photodetectors 2004, Proc. SPIE, Vol. 5353 (SPIE, Bellingham 2004) pp. 12–19

    Google Scholar 

  10. G. Lutz: Semiconductor radiation detectors. Device Physics (Springer, Berlin 1999)

    MATH  Google Scholar 

  11. M. Shur: Physics of Semiconductor Devices (Prentice Hall, Englewood Cliffs 1990)

    Google Scholar 

  12. S.M. Sze, G. Gibbons: Avalanche breakdown voltages of abrupt and linearly graded p-n junctions in Ge, Si, and GaP, Appl. Phys. Lett. 8, 111–113 (1966)

    ADS  Google Scholar 

  13. A.S. Grove: Physics and Technology of Semiconductor Devices (Wiley, New York 1967)

    Google Scholar 

  14. K.K. Ng: Complete guide to semiconductor devices (John Wiley & Sons, Inc., New York 2002)

    Google Scholar 

  15. S.S. Vishnubhatla, B. Eyglunet, J.C. Woolley: Electroreflectance measurements in mixed III–V alloys, Can. J. Phys. 47, 1661–1670 (1969)

    ADS  Google Scholar 

  16. M.S. Ünlu, S. Strite: Resonant cavity enhanced photonic devices, J. Appl. Phys. 78, 607–639 (1995)

    ADS  Google Scholar 

  17. E. Chen, S.Y. Chou: High-efficiency and high-speed silicon metal–semiconducto–metal photodetectors operating in the infrared, Appl. Phys. Lett. 70, 753–755 (1997)

    ADS  Google Scholar 

  18. M.K. Emsley, O. Dosunmu, M.S. Ünlu: High-speed resonant-cavity-enhanced silicon photodetectors on reflecting silicon-on-insulator substrates, IEEE Photonics Technol. Lett. 14, 519–521 (2002)

    ADS  Google Scholar 

  19. S.M. Csutak, S. Dakshina-Murthy, J.C. Campbell: CMOS-compatible planar silicon waveguide-grating-coupler photodetectors fabricated on silicon-on-insulator (SOI) substrates, IEEE J. Quantum Electron. 38, 477–480 (2002)

    ADS  Google Scholar 

  20. M. Ghioni, F. Zappa, V.P. Kesan, J. Warnock: A VLSI-compatible high-speed silicon photodetector for optical data links, IEEE Trans. Electron Dev. 43, 1054–1060 (1996)

    ADS  Google Scholar 

  21. J.D. Schaub, S.J. Koester, G. Dehlinger, Q.C. Ouyang, D. Guckenberger, M. Yang, D. Rogers, J. Chu, A. Grill: High speed, lateral PIN photodiodes in silicon technologies, Semiconductor Photodetectors 2004, Proc. SPIE, Vol. 5353 (SPIE Bellingham, 2004) pp. 1–9

    Google Scholar 

  22. K. Kato, S. Hata, K. Kawano, J.I. Yoshida, A. Kozen: A high efficiency 50 GHz InGaAs multimode waveguide photodetector, IEEE J. Quantum Electron. 28, 2728–2735 (1992)

    ADS  Google Scholar 

  23. D. Wake, T.P. Spooner, S.D. Perrin, I.D. Henning: 50 GHz InGaAs edge-coupled PIN photodetector, Electron. Lett. 27, 1073–1075 (1991)

    Google Scholar 

  24. T. Takeuchi, T. Nakata, K. Makita, M. Yamaguchi: High-speed, high-power and high-efficiency photodiodes with evanescently coupled graded-index waveguide, Electron. Lett. 36, 972–973 (2000)

    Google Scholar 

  25. S. Demiguel, L. Giraudet, L. Joulaud, J. Decobert, F. Blanche, V. Coupe, F. Jorge, P. Pagnod-Rossiaux, E. Boucherez, M. Achouche, F. Devaux: Evanescently coupled photodiodes integrating a double-stage taper for 40-Gb/s applications – compared performance with side-illuminated photodiodes, J. Lightwave Technol. 20, 2004–2014 (2002)

    ADS  Google Scholar 

  26. S. Demiguel, N. Li, X. Li, X. Zheng, J. Kim, J.C. Campbell, H. Lu, A. Anselm: Very high-responsivity evanescently coupled photodiodes integrating a short planar multimode waveguide for high-speed applications, IEEE Photonics Technol. Lett. 15, 1761–1763 (2003)

    ADS  Google Scholar 

  27. D. Malacara: Color Vision and Colorimetry: Theory and Applications, SPIE PRESS Monogr., Vol. PM 105 (SPIE, Bellingham 2002)

    Google Scholar 

  28. R.M. Turner, R.F. Lyon, R.J. Guttosch, R.B. Merrill: Vertical color filter detector group and array. US Patent 6,864,557, March 8, 2005

    Google Scholar 

  29. C. Wu, C. Crouch, C.H. Zhao, L. Carey, J.E. Younkin, R. Levinson, J.A. Mazur, E. Farrell, R.M. Gothoskar, A. Karger: Near-unity below-band-gap absorption by microstructured silicon, Appl. Phys. Lett. 78, 1850–1852 (2001)

    ADS  Google Scholar 

  30. Z. Huang, J.E. Carey, M. Liu, X. Guo, E. Mazur, J.C. Campbell: Microstructured silicon photodetector, Appl. Phys. Lett. 89, 033506 (2006)

    ADS  Google Scholar 

  31. J.E. Carey, C.H. Crouch, M. Shen, E. Mazur: Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes, Opt. Lett. 30, 1773–1775 (2005)

    ADS  Google Scholar 

  32. B.R. Tull, J.E. Carey, E. Mazur, J.P. McDonald, S.M. Yalisove: Silicon surface morphologies after femtosecond laser irradiation, MRS Bulletin 31, 626–633 (2006)

    Google Scholar 

  33. E. Janzen, R. Stedman, G. Grossmann, H.G. Grimmeiss: High-resolution studies of sulfur- and selenium-related donor centers in silicon, Phys. Rev. B 29, 1907–1918 (1984)

    ADS  Google Scholar 

  34. S.D. Gunapala, S.V. Bandara: Quantum well infrared photodetector (QWIP) focal plane arrays, Semicond. Semimet. Ser. 62, 197–282 (1999)

    Google Scholar 

  35. D. Leonard, M. Krishnamurthy, C.M. Reaves, S.P. Denbaars, P.M. Petroff: Direct formation of quantum-sized dots from uniform coherent islands of InGaAs on GaAs surfaces, Appl. Phys. Lett. 63, 3203–3205 (1993)

    ADS  Google Scholar 

  36. J.M. Moison, F. Houzay, F.L. Barthe, L. Leprince, E. Andre, O. Vatel: Self-organized growth of regular nanometer-scale InAs dots on GaAs, Appl. Phys. Lett. 64, 196–198 (1994)

    ADS  Google Scholar 

  37. N. Biyikli, I. Kimukin, B. Butun, O. Aytür, E. Ozbay: ITO-Schottky photodiodes for high-performance detection in the UV–IR spectrum, IEEE J. Select. Topics Quantum Electron. 10, 759–765 (2004)

    Google Scholar 

  38. K.C. Hwang, S.S. Li, Y.C. Kao: A novel high-speed dual wavelength InAlAs/InGaAs graded superlattice Schottky barrier photodiode for 0.8 and 1.3 micron detection, High-frequency analog fiber optic systems. Proc. SPIE Meet. (Society of Photo-Optical Instrumentation Engineers, Bellingham 1991) pp. 128–137, (A92-42451 17-74)

    Google Scholar 

  39. F.D. Shepherd, A.C. Yang: Silicon Schottky retinas for infrared imaging, Tech. Dig. IEEE IEDM 19, 310–313 (1973)

    Google Scholar 

  40. W.F. Kosonocky: Review of Schottky-barrier imager technology, Infrared Detectors and Focal Plane Arrays, Proc. SPIE, Vol. 1308, ed. by E.L. Dereniak, R.E. Sampson (SPIE, Bellingham 1990) pp. 2–26

    Google Scholar 

  41. S.M. Sze, D.J. Coleman, A. Loya: Current transport in metal–semiconductor–metal (MSM) structures, Solid State Electron. 14, 1209–1218 (1971)

    ADS  Google Scholar 

  42. B.F. Aull, A.H. Loomis, D.J. Young, R.M. Heinrichs, B.J. Felton, P.J. Daniels, D.J. Landers: Geiger-mode avalanche photodiodes for three-dimensional imaging, Lincoln Lab. J. 13, 335–350 (2002)

    Google Scholar 

  43. P.P. Webb, R.J. McIntyre, J. Conradi: Properties of avalanche photodiodes, RCA Review 35, 234–277 (1974)

    Google Scholar 

  44. R.J. McIntyre: Multiplication noise in uniform avalanche diodes, IEEE Trans. Electron. Dev. ED-13, 164–168 (1966)

    Google Scholar 

  45. V. Saveliev, V. Golovin: Silicon avalanche photodiodes on the base of metal–resistor–semiconductor (MRS) structures, Nucl. Instr. Methods A 442, 223–229 (2000)

    ADS  Google Scholar 

  46. V. Golovin, V. Saveliev: Novel type of avalanche photodetector with Geiger mode operation, Nucl. Instr. Methods A 518, 560–564 (2004)

    ADS  Google Scholar 

  47. P. Buzhan, B. Dolgoshein, L. Filatov, A. Ilyin, V. Kantzerov, V. Kaplin, A. Karakash, F. Kayumov, S. Kremin, E. Popova, S. Smirnov: Silicon photomultiplier and its possible applications, Nucl. Instr. Methods A 504, 48–52 (2003)

    ADS  Google Scholar 

  48. D. Bisello, Y. Gotra, V. Jejer, V. Kushpil, N. Malakhov, A. Paccagnella, Z. Sadygov, T. Stavitsky, E. Tsyganov: Silicon avalanche detectors with negative feedback as detectors for high energy physics, Nucl. Instr. Methods A 367, 212–214 (1995)

    ADS  Google Scholar 

  49. T. Figielsky, A. Torun: On the origin of light emitted from reverse biased p-n junctions, Proc. Int. Conf. Phys. Semicond. (1962) p. 853

    Google Scholar 

  50. A.G. Chynoweth, K.G. McKay: Photon emission from avalanche breakdown in silicon, Phys. Rev. 102, 369–376 (1956)

    ADS  Google Scholar 

  51. J. Bude: Hot-carrier luminescence in Si, Phys. Rev. B 45, 5848–5856 (1992)

    ADS  Google Scholar 

  52. A.L. Lacaita, F. Zappa, S. Bigliardi, M. Manfredi: On the bremsstrahlung origin of hot-carrier-induced photons in silicon devices, IEEE Trans. Electron. Dev. 40, 577–582 (1993)

    ADS  Google Scholar 

  53. S. Villa, A.L. Lacaita, A. Pacelli: Photon emission from hot electrons in silicon, Phys. Rev. B 52, 10993–10999 (1995)

    ADS  Google Scholar 

  54. J. Kemmer, G. Lutz: New semiconductor detector concepts, Nucl. Instr. Methods A 253, 356–377 (1987)

    ADS  Google Scholar 

  55. W.S. Boyle, G.E. Smith: Charge coupled semiconductor devices, Bell Syst. Tech. J. 49, 587–593 (1970)

    Google Scholar 

  56. M.F. Tompsett, G.F. Amelio, G.E. Smith: Charge coupled 8-bit shift register, Appl. Phys. Lett. 17, 111–115 (1970)

    ADS  Google Scholar 

  57. M.F. Tompsett, G.F. Amelio, W.J. Bertram, R.R. Buckley, W.J. McNamara, J.C. Mikkelsen, D.A. Sealer: Charge-coupled imaging devices: Experimental results, IEEE Trans. Electron. Dev. 18, 992–996 (1971)

    Google Scholar 

  58. C.H. Sequin, D.A. Sealer, W.J. Bertram Jr., M.F. Tompsett, R.R. Buckley, T.A. Shankoff, W.J. McNamara: A charge-coupled area image sensor and frame store, IEEE Trans. Electron. Dev. 20, 244–252 (1973)

    Google Scholar 

  59. W.S. Boyle, G.E. Smith: Buried channel charge coupled devices. US patent 3,792,322 (1974)

    Google Scholar 

  60. C.H. Sequin, M.F. Tompsett: Charge Transfer Devices (Academic, New York 1975)

    Google Scholar 

  61. P. Magnan: Detection of visible photons in CCD and CMOS: A comparative view, Nucl. Instrum. Methods Phys. Res. A 504, 199–212 (2003)

    ADS  Google Scholar 

  62. J. Janesick: Scientific charge coupled devices (SPIE Press, Bellingham, Washington 2001)

    Google Scholar 

  63. Hamamatsu Photonics (Ed.): Photomultiplier Tubes: Basics and Applications (Hamamatsu Photonics K.K., Massy, 2006)

    Google Scholar 

  64. G. Rieke: Detection of Light, 2nd edn. (Cambridge University Press, Cambridge 1996)

    Google Scholar 

  65. W. Demtröder: Laser Spectroscopy, 3rd edn. (Springer, Berlin, Heidelberg, New York 2002)

    Google Scholar 

  66. Burle: Channeltron Electron Multiplier Handbook for Mass Spectrometry Applications (Galileo Electro-Optics Corporation, Sturbridge 1991)

    Google Scholar 

  67. J.L. Wiza: Microchannel plate detectors, Nucl. Instrum. Methods 162, 587–601 (1979)

    ADS  Google Scholar 

  68. W.B. Colson, J. McPherson, F.T. King: High-gain imaging electron multiplier, Rev. Sci. Instrum. 44, 1694–1696 (1973)

    ADS  Google Scholar 

  69. R. De Waard, E.M. Wormser: Description and properties of various thermal detectors, Proc. IRE 47, 1508–1513 (1959)

    Google Scholar 

  70. M.H. Lee, R. Guo, A.S. Bhalla: Pyroelectric Sensors, J. Electroceram. 2, 229–242 (1998)

    Google Scholar 

  71. S.B. Lang: Pyroelectricity: From ancient curiosity to modern imaging tool, Phys. Today 58(8), 31–36 (2005)

    Google Scholar 

  72. J.F. Nye: Physical Properties of Crystals (Clarendon, Oxford 1957)

    MATH  Google Scholar 

  73. S.G. Porter: A brief guide to pyroelectric detectors, Ferroelectrics 33, 193–206 (1981)

    Google Scholar 

  74. P. Muralt: Micromachined infrared detectors based on pyroelectric thin films, Rep. Prog. Phys. 64, 1339–1388 (2001)

    ADS  Google Scholar 

  75. E.M. Wormser: Properties of thermistor infrared detectors, J. Opt. Soc. Am. 43, 15–21 (1953)

    ADS  Google Scholar 

  76. R.W. Astheimer: Thermistor infrared detectors, Infrared detectors, Proc. SPIE, Vol. 443, ed. by W.L. Wolfe (SPIE 1984), 95–109

    Google Scholar 

  77. F.J. Low: Low-temperature germanium bolometer, J. Opt. Soc. Am. 51, 1300–1304 (1961)

    ADS  Google Scholar 

  78. P.L. Richards: Bolometer for infrared and millimeter waves, J. Appl. Phys. 76, 1–24 (1994)

    MathSciNet  ADS  Google Scholar 

  79. A. Rogalski, Z. Bielecki: Detection of optical radiation, Bull. Pol. Acad. Tech. 52, 43–66 (2004)

    Google Scholar 

  80. A.O. Goushcha, C. Hicks, R.A. Metzler, M. Kalatsky, E. Bartley, D. Tulbure: US Patent No. 6,762,473. Ultra thin back illuminated photodiode array structures and fabrication methods, Semicoa, Costa Mesa, CA (US), Jul 13, 2004.

    Google Scholar 

  81. R.P. Luhta, R.A. Mattson, N. Taneja, P. Bui, R. Vasbo: Back-illuminated photodiodes for multislice CT, Proc. SPIE (SPIE 2003)

    Google Scholar 

  82. S.E. Holland, N.W. Wang, W.W. Moses: Development of low noise, back-side illuminated silicon photodiode arrays, IEEE Trans. Nucl. Sci. 44, 443–447 (1997)

    ADS  Google Scholar 

  83. W. Thomas (Ed.): SPSE Handbook of Photographic Science and Engineering. Society of Photographic Sciences and Engineers (Wiley, New York, London, Sydney, Toronto 1973)

    Google Scholar 

  84. A.P. Marchetti, G.L. Bottger: Optical Absorption Spectrum of AgF, Phys. Rev. B 3, 2604–2607 (1971)

    ADS  Google Scholar 

  85. F.C. Brown: Solid State Chemistry (Plenum, New York 1973)

    Google Scholar 

  86. B.L. Joesten, F.C. Brown: Indirect optical absorption of AgCl-AgBr alloys, Phys. Rev. 148, 919–927 (1966)

    ADS  Google Scholar 

  87. S. Glaus, G. Calzaferri: The band structures of the silver halides AgF, AgCl, and AgBr: A comparative study, Photochem. Photobiol. Sci. 2, 398–401 (2003)

    Google Scholar 

  88. S. Dahne: The evolution of thinking on the mechanism of spectral sensitization, J. Imaging Sci. Technol. 38, 101–117 (1994)

    Google Scholar 

  89. R.W. Gurney, N.F. Mott: The theory of the photolysis of silver bromide and the photographic latent image, Proc. R. Soc. A 164, 151–167 (1938)

    ADS  Google Scholar 

  90. T. Förster: Zwischenmolekulare Energiewanderung un Fluoreszenz, Ann. Phys. 2, 55–75 (1948), (in German)

    MATH  Google Scholar 

  91. D.L. Dexter, T. Förster, R.S. Knox: Radiationless transfer of energy of electronic excitation between impurity molecules in crystals, Phys. Status Solidi (b) 34, K159 (1969)

    ADS  Google Scholar 

  92. D.L. Andrews, A.A. Demidow (Eds.): Resonant Energy Transfer (Wiley, Chicester 1999)

    Google Scholar 

  93. R.D. Theys, G. Sosnovsky: Chemistry and processes of color photography, Chem. Rev. 97, 83–132 (1997)

    Google Scholar 

  94. J. Belloni: Photography: Enhancing sensitivity by silver-halide crystal doping, Radiat. Phys. Chem. 67, 291–296 (2003)

    ADS  Google Scholar 

  95. G.D. Boreman: Modulation transfer function in optical and electro-optical systems (SPIE, Bellingham 2001)

    Google Scholar 

  96. H. Hoppe, N.S. Sariciftci: Polymer Solar Cells, Adv. Polym. Sci. 214, 1–86 (2008)

    Google Scholar 

  97. N.S. Sariciftci, L. Smilowitz, A.J. Heeger, F. Wudl: Photoinduced electron transfer from a conducting polymer to buckminsterfullerene, Science 258, 1474–1476 (1992)

    ADS  Google Scholar 

  98. J. Xue, S.R. Forrest: Carrier transport in multilayer organic photodetectors: I. Effects of layer structure on dark current and photoresponse, J. Appl. Phys. 95, 1859–1868 (2004)

    ADS  Google Scholar 

  99. J. Xue, S.R. Forrest: Carrier transport in multilayer organic photodetectors: II. Effects of anode preparation, J. Appl. Phys. 95, 1869–1877 (2004)

    ADS  Google Scholar 

  100. N.S. Sariciftci, D. Braun, C. Zhang, V.T. Srdanov, A.J. Heeger, G. Stucky, F. Wudl: Semiconducting polymer–buckminsterfullerene heterojunctions: Diodes, photodiodes, and photovoltaic cells, Appl. Phys. Lett. 62, 585–587 (1993)

    ADS  Google Scholar 

  101. J.M. Halls, K. Pichler, R.H. Friend, S.C. Moratti, A.B. Holmes: Exciton diffusion and dissociation in a poly(p-phenylenevinylene)/C60 heterojunction photovoltaic cell, Appl. Phys. Lett. 68, 3120–3122 (1996)

    ADS  Google Scholar 

  102. G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger: Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor–acceptor heterojunctions, Science 270, 1789–1791 (1995)

    ADS  Google Scholar 

  103. G. Konstantatos, E.H. Sargent: Solution-processed quantum dot photodetectors, Proc. IEEE 97, 1666–1683 (2009)

    Google Scholar 

  104. S. Guenes, N.S. Sariciftci: Hybrid solar cells, Inorg. Chim. Acta. 361, 581–588 (2008)

    Google Scholar 

  105. G. Yu, K. Pakbaz, A.J. Heeger: Semiconducting polymer diodes: Large size, low cost photodetectors with excellent visible – ultraviolet sensitivity, Appl. Phys. Lett. 64, 3422–3424 (1994)

    ADS  Google Scholar 

  106. P.V.V. Jayaweera, A.G.U. Perera, M.K.I. Senevirathna, P.K.D.D.P. Pitigal, K. Tennakone: Dye-sensitized near-infrared room-temperature photovoltaic photodetectors, Appl. Phys. Lett. 85, 5754–5756 (2004)

    ADS  Google Scholar 

  107. P. Peumans, V. Bulovic, S.R. Forrest: Efficient high-bandwidth organic multilayer photodetectors, Appl. Phys. Lett. 76, 3855–3857 (2000)

    ADS  Google Scholar 

  108. N.C. Greenham, X. Peng, A.P. Alivisatos: Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity, Phys. Rev. B 54, 17628–17637 (1996)

    ADS  Google Scholar 

  109. M.V. Jarosz, V.J. Porter, B.R. Fisher, M.A. Kastner, M.G. Bawendi: Photoconductivity studies of treated CdSe quantum dot films exhibiting increased exciton ionization efficiency, Phys. Rev. B 70, 195327 (2004)

    ADS  Google Scholar 

  110. A.J. Nozik: Quantum dot solar cells, Physics E 14, 115–120 (2002)

    ADS  Google Scholar 

  111. R.D. Schaller, V.I. Klimov: High efficiency carrier multiplication in PbSe nanocrystals: Implications for solar-energy conversion, Phys. Rev. Lett. 92, 186601 (2004)

    ADS  Google Scholar 

  112. J.A. McGuire, J. Joo, J.M. Pietryga, R.D. Schaller, V.I. Klimov: New aspects of carrier maltiplication in semiconductor nanocrystals, Acc. Chem. Res. 41, 1810–1819 (2008)

    Google Scholar 

  113. R.D. Schaller, M. Sykora, J.M. Pietryga, V.I. Klimov: Seven excitons at a cost of one: Redefining the limits for conversion efficiency of photons into charge carriers, Nano Lett. 6, 424–429 (2006)

    ADS  Google Scholar 

  114. M. Califano, A. Zunger, A. Franceschetti: Efficient inverse Auger recombination at threshold in CdSe nanocrystals, Nano Lett. 4, 525–531 (2004)

    ADS  Google Scholar 

  115. R. Ellingson, M.C. Beard, J.C. Johnson, P. Yu, O.I. Micic, A.J. Nozik, A. Shabaev, A.L. Efros: Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots, Nano Lett. 5, 865–871 (2005)

    ADS  Google Scholar 

  116. R.D. Schaller, V.M. Agranovich, V.I. Klimov: High-efficiency carrier multiplicationt hrough direct photogeneration of multi-excitons via virtual single-exciton states, Nat. Phys. 1, 189–194 (2005)

    Google Scholar 

  117. M.C. Beard, K.P. Knutsen, P. Yu, J.M. Luther, Q. Song, W.K. Metzger, R.J. Ellingson, A.J. Nozik: Multiple exciton generation in colloidal silicon nanocrystals, Nano Lett. 7, 2506–2512 (2007)

    ADS  Google Scholar 

  118. D. Timmerman, I. Izeddin, P. Stallinga, I.N. Yassievich, T. Gregorkiewicz: Space-separated quantum cutting with silicon nanocrystals for photovoltaic applications, Nat. Photonics 2, 105–109 (2008)

    ADS  Google Scholar 

  119. H.R. Stuart, D.G. Hall: Absorption enhancement in silicon-on-insulator waveguides using metal island films, Appl. Phys. Lett. 69, 2327–2329 (1996)

    ADS  Google Scholar 

  120. H.R. Stuart, D.G. Hall: Island size effects in nanoparticle-enhanced photodetectors, Appl. Phys. Lett. 73, 3815–3817 (1998)

    ADS  Google Scholar 

  121. H.A. Atwater, A. Polman: Plasmonics for improved photovoltaic devices, Nat. Mater. 9, 205–213 (2010)

    ADS  Google Scholar 

  122. K.R. Catchpole, A. Polman: Design principles for particle plasmon enhanced solar cells, Appl. Phys. Lett. 93, 191113 (2008)

    ADS  Google Scholar 

  123. K.R. Catchpole, A. Polman: Plasmonic solar cells, Opt. Express 16, 21793–21800 (2008)

    ADS  Google Scholar 

  124. M. Dragoman, D. Dragoman: Plasmonics: Applications to nanoscale terahertz and optical devices, Prog. Quantum Electron. 32, 1–41 (2008)

    ADS  Google Scholar 

  125. H. Ditlbacher, F.R. Aussenegg, J.R. Krenn, B. Lamprecht, G. Jakopic, G. Leising: Organic diodes as monolithically integrated surface plasmon polariton detectors, Appl. Phys. Lett. 89, 161101 (2006)

    ADS  Google Scholar 

  126. E. Laux, C. Genet, T. Skauli, T.W. Ebbesen: Plasmonic photon sorts for spectral and polarimetric imaging, Nat. Photonics 2, 161–164 (2008)

    ADS  Google Scholar 

  127. K.D. Irwin: An application of electrothermal feedback for high resolution cryogenic particle detection, Appl. Phys. Lett. 66, 1998–2000 (1995)

    ADS  Google Scholar 

  128. B. Cabrera, R.M. Clarke, P. Colling, A.J. Miller, S.W. Nam, R. Romani: Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors, Appl. Phys. Lett. 73, 735–737 (1998)

    ADS  Google Scholar 

  129. P. Mauskopf, D. Morozov, D. Glowack, D. Goldie, S. Withington, M. Bruijn, P. De Korte, H. Hoevers, M. Ridder, J. van der Kuur, J. Gao: Development of transition edge superconducting bolometers for the SAFARI Far-Infrared spectrometer on the SPICA space-borne telescope, Proc. SPIE 7020, 1–9 (2008), 70200N

    Google Scholar 

  130. A. Peacock, P. Verhoeve, N. Rando, A. van Dordrecht, B.G. Taylor, C. Erd, M.A.C. Perryman, R. Venn, J. Howlett, D.J. Goldie, J. Lumley, M. Wallis: Single optical photon detection with a superconducting tunnel junction, Nature 381, 135–137 (1996)

    ADS  Google Scholar 

  131. G.W. Fraser, J.S. Heslop-Harrison, T. Schwarzacher, A.D. Holland, P. Verhoeve, A. Peacock: Detection of multiple fluorescent labels using superconducting tunnel junction detectors, Rev. Sci. Instrum. 74, 4140–4144 (2003)

    ADS  Google Scholar 

  132. W.A. Little: The transport of heat between dissimilar solids at low temperatures, Can. J. Phys. 37, 334–339 (1959)

    ADS  Google Scholar 

  133. G. Goltsman, O. Okunev, G. Chulkova, A. Lipatov, A. Dzardanov, K. Smirnov, A. Semenov, B. Voronov, C. Williams, R. Sobolewski: Fabrication and properties of an ultrafast NbN hot-electron single photon detector, IEEE Trans. Appl. Supercond. 11, 574–577 (2001)

    Google Scholar 

  134. J. Zhang, W. Slysz, A. Verevkin, O. Okunev, G. Chulkova, A. Korneev, A. Lipatov, G. Golʼtsman, R. Sobolewski: Response time characterization of NbN superconducting single photon detectors, IEEE Trans. Appl. Supercond. 13, 180–183 (2003)

    Google Scholar 

  135. A.J. Kerman, E.A. Dauler, W.E. Keicher, J.K.W. Yang, K.K. Berggren, G.N. Golʼtsman, B.M. Voronov: Kinetic-inductance-limited reset time of superconducting nanowire photon counters, Appl. Phys. Lett. 88, 111116 (2006)

    ADS  Google Scholar 

  136. A.D. Semenov, P. Haas, B. Guenther, H.-W. Huebers, K. Ilʼin, M. Siegel, A. Kirste, J. Beyer, D. Drung, T. Schurig, A. Smirnov: An energy-resolving superconducting nanowire photon counter, Supercond. Sci. Technol. 20, 919–924 (2007)

    ADS  Google Scholar 

  137. S.N. Dorenbos, E.M. Reiger, U. Perinetti, V. Zwiller, T. Zijlstra, T.M. Klapwijk: Low noise superconducting single photon detectors on silicon, Appl. Phys. Lett. 93, 131101 (2008)

    ADS  Google Scholar 

  138. E.F.C. Driessen, F.R. Braakman, E.M. Reiger, S.N. Dorenbos, V. Zwiller, M.J.A. de Dood: Impedance model for the polarization-dependent optical absorption of superconducting single-photon detectors, Eur. Phys. J. Appl. Phys. 47, 10701 (2009)

    ADS  Google Scholar 

  139. V. Anant, A.J. Kerman, E.A. Dauler, J.K.W. Yang, K.M. Rosfjord, K.K. Berggren: Optical properties of superconducting nanowire single-photon detectors, Opt. Express 16, 10750–10761 (2008)

    ADS  Google Scholar 

  140. J.A. Stern, W.H. Farr: Fabrication and characterization of superconducting NbN nanowire single photon detectors, IEEE Trans. Appl. Supercond. 17, 306–309 (2007)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bernd Tabbert or Alexander Goushcha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag

About this chapter

Cite this chapter

Tabbert, B., Goushcha, A. (2012). Optical Detectors. In: Träger, F. (eds) Springer Handbook of Lasers and Optics. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19409-2_9

Download citation

Publish with us

Policies and ethics