Skip to main content

Soft Matter Modeling of Biological Cells

  • Chapter
Advances in Soft Matter Mechanics

Abstract

In this work, we review some of our recent work on developments of soft matter models for cells to study the focal adhesion of endothelial cells as well as stem cells, in an attempt to explain mechanical information exchange between the cells and their extracellular environment. Particularly, we model the macroscale endothelial cell as a hyperelastic medium, and the stem cell as a liquid crystal elastomer. A nanoscale adhesive model is introduced to describe the interaction between receptors and ligands. We have developed and implemented a Lagrange type meshfree Galerkin formulation and related computational algorithms for the proposed cell and adhesive contact model. A comparison study with experimental data has been conducted to validate the parameters of the cell model. By using the soft matter cell model, we have simulated the soft adhesive contact process between cells and extracellular substrate. The soft matter cell model presented in this work is a primitive one, but it may have provided a useful approach for more realistic and more accurate modeling of cells, especially stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Engler A J, Sen S, Sweeney H L, et al. Matrix elasticity directs stem cell lineage specification. Cell, 126, 677–689, 2006.

    Article  Google Scholar 

  2. Ericksen J L. Equilirbrium theory pf liquid crystals. Advanced in Lquid Crystals, 2, 233–298, 1976.

    Google Scholar 

  3. Ericksen J L. On equations of motion for liquid crystals. Quarterly Journal of Mechanics and Applied Mathematics, 29, 203–208, 1976.

    Article  MATH  Google Scholar 

  4. Leslie F M. Theory of flow phenomena in liquid crystals. Advances in Liquid Crystals, 4, 1–81, 1979.

    Google Scholar 

  5. Leslie F M. Continuum theory for nematic liquid crystals. Continuum Mechanics and Thermodynamics, 4, 167–175, 1992.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Helfrich W. Elastic properties of lipid bilayer: Theory and possible experiments. Z. Naturforsch. C, 28, 693–703, 1973.

    Google Scholar 

  7. Deuling H J, Helfrich W. Red blood cell shapes as explained on the basis of curvature elasticity. Biophysics Journal, 16, 861–868, 1976.

    Article  ADS  Google Scholar 

  8. Deuling H J, Helfrich W. The curvature elasticity of fluid membranes: A catalogue of vesicles shapes. Journal of Physique (Paris), 37, 1335–1345, 1976.

    Article  Google Scholar 

  9. Li J, Dao M, Lim C T, et al. Spectrin-level modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte. Biophysics Journal, 88, 3707–3719, 2005.

    Article  ADS  Google Scholar 

  10. Marko J F, Siggia E D. Statistical mechanics of supercoiled DNA. Physical Review E, 52, 2912–2938, 1995.

    Article  MathSciNet  ADS  Google Scholar 

  11. Marko J F, Siggia E D. Stretching DNA. Macromolecule, 28, 8759–8770, 1995.

    Article  ADS  Google Scholar 

  12. Wang X J, Zhou Q F. Liquid Crystalline Polymers. World Scientific, Singapore, 2004.

    Google Scholar 

  13. Warner M, Terentjev E M. Liquid Crystal Elastomers. Revised edition. Oxford Science Publications, Oxford, UK, 2007.

    Google Scholar 

  14. Martin R, Farjanel J, Eichenberger D, et al. Liquid crystalline ordering of procollagen as a determinant of three-dimensional extracellular matrix architecture. Journal of Molecular Biology, 301, 11–17, 2000.

    Article  Google Scholar 

  15. Knight D P, Feng D, Stewart M, et al. Changes in macromolecular organisation in collagen assemblies during secretion in the nidamental gland and formation of the egg capsule wall in the dogfish Scyliorhinus canicula. Phil. Trans. Royal Soc. Lond. B, 341, 419–436, 1993.

    Article  ADS  Google Scholar 

  16. Knight D P, Vollrath F. Biological liquid crystal elastomers. Philosophical Transaction of Royal Society of London B, 357, 155–163, 2002.

    Article  Google Scholar 

  17. Warner M, Terentjev E M. Nematic elastomers a new state of matter? Prog. Polym. Sci., 21, 853–891, 1996.

    Article  Google Scholar 

  18. Warner M. New elastic behavior arising from the unusual constitutive relation of nematic solids. Journal of Mechanics and Physics of Solids, 47, 1355–1377, 1999.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Discher D E, Janmey P, Wang Y L. Tissue cells feel and respond to the stiffness of their substrate. Science, 310, 1139–1143, 2005.

    Article  ADS  Google Scholar 

  20. Wong J Y, Velasco A, Rajagopalan P, et al. Directed movement of vascular smooth muscle cells on gradient-compliant hydrogels. Langmuir, 19, 1908–1913, 2003.

    Article  Google Scholar 

  21. Schwarz U. Soft matters in cell adhesion: Rigidity sensing on soft elastic substrate. Soft Matter, 3, 263–266, 2007.

    Article  ADS  Google Scholar 

  22. Shemesh T, Geiger B, Bershadsky A D, et al. Focal adhesions as mechanosensors: A physical mechanism. Proceedings of National Academy of Science, 102, 12383–12388, 2005.

    Article  ADS  Google Scholar 

  23. Bershadsky A, Ran M L, Carramusa L, et al. Cytoskeleton-adhesion crosstalk: Molecular and biophysical aspects. Life Science Open Day, Weizmann Institute of Science, 2006.

    Google Scholar 

  24. Bickel T, Bruinsma R. Focal adhesion: physics of a biological mechano-sensor. arXiv:condmat0306116v1, 2003.

    Google Scholar 

  25. Aroush D R B, Wagner H D. Shear-stress profile along a cell focal adhesion. Advanced Materials, 18, 1537–1540, 2006.

    Article  Google Scholar 

  26. Besser A, Safran S A. Force-induced adsorption and anisotropic growth of focal adhesion. Biophysical Journal, 90, 3469–3484, 2006.

    Article  ADS  Google Scholar 

  27. Novak I L, Slepchenko B M, Mogilner A, et al. Cooperativity between cell contractility and adhesion. Physical Review Letters, 93, 268109, 2004.

    Article  ADS  Google Scholar 

  28. Bruinsma R. Theory of force regulation by nascent adhesion sites. Biophysical Journal, 89, 87–94, 2005.

    Article  ADS  Google Scholar 

  29. Wang J H C. Substrate deformation determines actin cytoskeleton reorganization: A mathematical modeling and experimental study. Journal Theoretical Biology,202, 33–41, 2000.

    Article  Google Scholar 

  30. Freund L B, Lin Y. The role of binder mobility in spontaneous adhesive contact and implications for cell adhesion. Journal of the Mechanics and Physics of Solids, 52, 2455–2472, 2004.

    Article  ADS  MATH  Google Scholar 

  31. Ni Y, Martin Y M C. Cell morphology and migration linked to substrate rigidity. Soft matter, 3, 1285–1292, 2007.

    Article  ADS  Google Scholar 

  32. Deshpande V S, Mrksich M, McMeeking R M, et al. A bio-mechanical model for coupling cell contractility with focal adhesion formation. Journal of the Mechanics and Physics of Solids, 56, 1484–1510, 2008.

    Article  MATH  Google Scholar 

  33. Liu P, Zhang Y W, Cheng Q H, et al. Simulations of the spreading of a vesicle on a substrate surface mediated by receptor-ligand binding. Journal of the Mechanics and Physics of Solids, 55, 1166–1181, 2007.

    Article  ADS  MATH  Google Scholar 

  34. Sun L, Cheng Q H, Gao H J, et al. Computational modeling for cell spreading on a substrate mediated by specific interactions, long-range recruiting interactions, and diffusion of binders. Physical Review E, 79, 061907, 2009.

    Article  ADS  Google Scholar 

  35. Roy S, Jerry Qi H. A computational biomimetic study of cell crawling. Biomechanics and Modeling in Mechanobiology, 9, 573–581, 2010.

    Article  Google Scholar 

  36. Zeng X, Li S. Multiscale modeling and simulation of soft adhesion and contact of stem cells. Journal of the Mechanical Behaviors of Biomedical Materials, 4, 180–189, 2011.

    Article  Google Scholar 

  37. Caille N, Thoumine O, Tardy Y, et al. Contribution of the nucleus to the mechanical properties of endothelial cells. Journal of Biomechanics, 35, 177–187, 2002.

    Article  Google Scholar 

  38. Sen S, Engler A J, Discher D E. Matrix strains induced by cells: Computing how far cells can feel. Cellular and Molecular Bioengineering, 2, 39–48, 2009.

    Article  Google Scholar 

  39. Fereol S, Fodil R, Laurent V M, et al. Prestress and adhesion site dynamics control cell sensitivity to extracellular stiffness. Biophysical journal, 96, 2009–2022, 2009.

    Article  ADS  Google Scholar 

  40. Marckmann G, Verron E. Comparison of hyperelastic models for rubberlike materials. Rubber Chemistry and Technology, 79(5), 835–858, 2006.

    Article  Google Scholar 

  41. Fried I, Johnson A R. A note on elastic energy density functions for largely deformed compressible rubber solids. Computer Methods in Applied Mechanics and Engineering, 69, 53–64, 1988.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. Flory P J. Principles of Polymer Chemistry. Cornell University Press, Ithaca, New York, 1953.

    Google Scholar 

  43. Conti S, DeSimone A, Dolzmann G. Semisoft elasticity and director reorientation in stretched sheets of nematic elastomers. Physical Review E, 66, 061710, 2002.

    Article  ADS  Google Scholar 

  44. Conti S, DeSimone A, Dolzmann G. Soft elastic response of stretched sheets of nematic elastomers: A numerical study. Journal of Mechanics and Physics of Solids, 50, 1431–1451, 2002.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. DeSimone A. Coarse-grained models of materials with non-convex free-energy two case studies. Computer Methods in Applied Mechanics and Engineering, 193, 48–51, 2003.

    MathSciNet  Google Scholar 

  46. Fried E, Korchagin V. Striping of nematic elastomers. International Journal of Solids and Structures, 39: 3451–4367, 2002.

    Article  MATH  Google Scholar 

  47. Anderson D R, Carlson D E, Fried E. A continuum-mechanical theory for nematic elastomers, Journal of Elasticity, 56: 33–58, 1999.

    Article  MathSciNet  Google Scholar 

  48. Cahn J W, Allen S M. A microscopic theory of domain wall motion and its experimental verification in Fe-Al alloy domain growth kinetics. Journal of Physics 38: C7–51, 1977.

    Google Scholar 

  49. Seifert U. Adhesion of vesicles in two dimensions. Physical Review A, 43, 6803–6814, 1991.

    Article  MathSciNet  ADS  Google Scholar 

  50. Li S, Qian D, Liu W K, et al. A meshfree contact-detection algorithm. Computer Methods in Applied Mechanics and Engineering, 190, 3271–3292, 2001.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  51. Li S, Kam Liu W. Meshfree Particle Methods. Springer, Berlin, 2004.

    MATH  Google Scholar 

  52. Winer J P, Oake S, Janmey P A. Non-linear elasticity of extracellular matrices enables contractile cells to communicate local position and orientation. PLoS ONE, 4(7): e6382, 2009.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zeng, X., Li, S., Ren, B. (2012). Soft Matter Modeling of Biological Cells. In: Advances in Soft Matter Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19373-6_3

Download citation

Publish with us

Policies and ethics