Skip to main content

Possible Use of Wood Ash and Compost for Improving Acid Tropical Soils

  • Chapter
  • First Online:
Recycling of Biomass Ashes

Abstract

Infertility of acid soils is a major limitation to crop production on highly weathered and leached soils throughout the world. The main characteristics of these soils are their low pH, low levels of organic matter, Ca, Mg, P, or Mo deficiency, Al or Mn toxicity, or both, and very low mineralization and nitrification rates. Lime is generally recommended to correct soil acidity, but lime is unaffordable for resource-poor farmers in the tropics. Many alternatives have been proposed, and among them products from organic waste materials, e.g., composts, have proven to be an efficient alternative to the use of lime. Wood ash is a potential source of trace elements, nutrients, and lime. Wood ash could be used as an additive to fertilizer, and wood ash admixture to organic wastes prior to composting is known to improve compost quality and may reduce the amount of compost required to raise the pH to suitable levels. Wood ash compost as a liming agent as a replacement for lime could potentially aid in remediating acidity and base deficiency as well as boosting the soil microbial pool in tropical agricultural soils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Arbestain MC, Barreal ME, Macías F (1999) Parent material influence on sulfate sorption in forest soils from Northwestern Spain. Soil Sci Soc Am J 63:1906–1914

    Article  CAS  Google Scholar 

  • Atlas RM, Bartha R (1998) Microbial ecology: fundamentals and application, 4th edn. Benjamin Cummings, San Francisco, p 694

    Google Scholar 

  • Baath E, Frostegard A, Pennanen T, Fritze H (1995) Microbial community structure and pH response in relation to soil-organic-matter quality in wood-ash fertilized, clear-cut or burned coniferous forest soils. Soil Biol Biochem 27:229–240

    Article  Google Scholar 

  • Banerjee MR, Burton DL, Depoe S (1997) Impact of sewage sludge application on soil biological characteristics. Agric Ecosyst Environ 66:241–249

    Article  Google Scholar 

  • Barber SA (1995) Soil nutrient bioavailability: a mechanistic approach. Wiley, New York, pp 202–230

    Google Scholar 

  • Basker A, Macgregor AN, Kirkman JH (1992) Influence of soil ingestion by earthworms on the availability of potassium in soil: an incubation experiment. Biol Fertil Soils 14:300–303

    Article  CAS  Google Scholar 

  • Bengtson GW, Cornette JJ (1973) Disposal of composted municipal waste in a plantation of young slash pine: effects on soil and trees. J Environ Qual 2:441–444

    Article  CAS  Google Scholar 

  • Bintrim SB, Donohue TJ, Handelsman J, Roberts GP, Goodman RM (1997) Molecular phylogeny of archaea from soil. Proc Natl Acad Sci USA 94:277–282

    Article  PubMed  CAS  Google Scholar 

  • Blair JM, Parmelee RW, Lavelle P (1995) Influences of earthworms on biogeochemistry. In: Hendrix PF (ed) Earthworm ecology and biogeography in North America. Lewis, Boca Raton, pp 127–158

    Google Scholar 

  • Blamey FPC, Edwards DG, Asher CJ (1983) Effects of aluminum, OH-Al and P-Al molar ratios, and ionic strength on soybean root elongation in solution culture. Soil Sci 136:197–207

    Article  CAS  Google Scholar 

  • Bolan NS, Hedley MJ (2003) Role of carbon, nitrogen, and sulfur cycles in soil acidification. In: Rengel Z (ed) Handbook of soil acidity. Marcel Dekker, New York, pp 29–56

    Google Scholar 

  • Bolan NS, Naidu R, Mahimairaja S, Baskaran S (1994) Influence of low-molecular weight organic acids on the solubilization of phosphates. Biol Fertil Soils 18:311–319

    Article  CAS  Google Scholar 

  • Borggaard OK, Jorgensen SS, Moberg JP, Rabenlange B (1990) Influence of organic-matter on phosphate adsorption by aluminium and iron oxides in sandy soils. J Soil Sci 41:443–449

    Article  CAS  Google Scholar 

  • Bougnom BP, Maier J, Etoa FX, Insam H (2009) Composts with wood ash addition: a risk or a chance for ameliorating acid tropical soils? Geoderma 153:402–407

    Article  CAS  Google Scholar 

  • Bougnom BP, Knapp BA, Etoa FX, Elhottová D, Němcová A, Insam H (2010) Designer composts for ameliorating acid tropical soils: effects on the soil microbiota. Appl Soil Ecol 45:319–324

    Article  Google Scholar 

  • Brady N, Weil R (1996) The nature and properties of soils, 12th edn. Prentice, Upper Saddle River, New Jersey, p 385, 495

    Google Scholar 

  • Burle ML, Mielniczuk J, Focchi S (1997) Effect of cropping systems on soil chemical characteristics, with emphasis on soil acidification. Plant Soil 190:309–316

    Article  CAS  Google Scholar 

  • Carney KM, Matson PA, Bohannan BJM (2004) Diversity and composition of tropical soil nitrifiers across a plant diversity gradient and among land-use types. Ecol Lett 7:684–694

    Article  Google Scholar 

  • Chapman SJ, Campbell CD, Artz RRE (2007) Assessing CLPPs using MicroResp(). A comparison with biolog and multi-SIR. J Soil Sediment 7:406–410

    Article  Google Scholar 

  • Chen M, Ma LQ (2001) Taxonomic and geographic distribution of total phosphorus in Florida surface soils. Soil Sci Soc Am J 65:1539–1547

    Article  CAS  Google Scholar 

  • Clapham WM, Zibilske LM (1992) Wood ash as a liming amendment. Commun Soil Sci Plant Anal 23:1209–1227

    Article  CAS  Google Scholar 

  • Coleman DC (2001) Soil biota, soil systems and processes. In: Levin S (ed) Encyclopedia of biodiversity, vol 5. Academic, San Diego, pp 305–314

    Chapter  Google Scholar 

  • Coleman DC, Reid CPP, Cole CV (1983) Biological strategies of nutrient cycling in soil systems. Adv Ecol Res 13:1–55

    Article  Google Scholar 

  • Costa A, Rosolem CA (2007) Liming in the transition to no-till under a wheat soybean rotation. Soil Tillage Res 97:207–217

    Google Scholar 

  • Crecchio C, Curci M, Pizzigallo MDR, Ricciuti P, Ruggiero P (2004) Effects of municipal solid waste compost amendments on soil enzyme activities and bacterial genetic diversity. Soil Biol Biochem 36:1595–1605

    Article  CAS  Google Scholar 

  • Delhaize E, Ryan PR, Randall PJ (1993) Aluminum tolerance in wheat (Triticum aestivum L.) II: Aluminum-stimulated excretion of malic acid from root apices. Plant Physiol 103:695–702

    PubMed  CAS  Google Scholar 

  • Delschen T (1999) Impacts of long-term application of organic fertilizers on soil quality parameters in reclaimed loess soils of the Rhineland lignite mining area. Plant Soil 213:43–54

    Article  CAS  Google Scholar 

  • Demeyer A, Nkana JCV, Verloo MG (2001) Characteristics of wood ash and influence on soil properties and nutrient uptake: an overview. Bioresour Technol 77:287–295

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg SH, Tittlebaum ME, Eaton HC, Soroczak MM (1986) Chemical characteristics of selected fly ash leachate. J Environ Sci Health A 21:383–402

    Article  Google Scholar 

  • Ekschmitt K, Bakonyi G, Bongers M, Bongers T, Bostrom S, Dogan H, Harrison A, Kallimanis A, Nagy P, O’Donnell AG, Sohlenius B, Stamou GP, Wolters V (1999) Effects of the nematofauna on microbial energy and matter transformation rates in European grassland soils. Plant Soil 212:45–61

    Article  CAS  Google Scholar 

  • Epstein E, Chaney RL, Henry C, Logan TJ (1992) Trace elements in municipal solid waste compost. Biomass Bioenergy 3:227–238

    Article  CAS  Google Scholar 

  • Eriksson HM (1998) Short-term effects of granulated wood ash on forest soil chemistry in SW and NE Sweden. Scand J For Res 43–55

    Google Scholar 

  • Etiegni L, Campbell AG (1991) Physical and chemical characteristics of wood ash. Bioresour Technol 37:173–178

    Article  CAS  Google Scholar 

  • Etiegni L, Campbell AG, Mahler RL (1991) Evaluation of wood ash disposal on agricultural land: I. Potential as a soil additive and liming agent. Commun Soil Sci Plant Anal 243–256

    Google Scholar 

  • Fuchs JG (2009) Interactions between beneficial and harmful microorganisms: from the composting process to compost application. In: Insam H, Franke-Whittle IH, Goberna M (eds) From waste to resource: microbes do the job. Microbes at work. Springer, Berlin, pp 213–230

    Google Scholar 

  • Fuchs JG, Bieri M, Chardonnens M (2004) Effects of compost and digestate on the environment, soil fertility and plant health. In: Fuchs JG, Bieri M (eds) Review of the current literature. FiBL, Frick, pp 1–16

    Google Scholar 

  • Garcia-Gil JC, Plaza C, Soler-Rovira P, Polo A (2000) Long-term effects of municipal solid waste compost application on soil enzyme activities and microbial biomass. Soil Biol Biochem 32:1907–1913

    Article  CAS  Google Scholar 

  • Garcia-Rodeja E, Silva BM, Macıas F (1987) Andosols developed from non-volcanic materials in Galicia, NW Spain. J Soil Sci 38:573–591

    Article  CAS  Google Scholar 

  • Gerzabek MH, Kirchmann H, Pichlmayer F (1995) Response of soil aggregate stability to manure amendments in the Ultuna long- term soil organic matter experiment. Z Pflanzenernahr Dung Bodenkd 158:257–260

    Article  CAS  Google Scholar 

  • Gobat JM, Aragno M, Mattey W (2003) Le sol vivant, 2e édition revue et complétée. Presses Polytechniques et Universitaires Romandes, Lausanne, p 319

    Google Scholar 

  • Grime JP (1997) Ecology – biodiversity and ecosystem function: the debate deepens. Science 277:1260–1261

    Article  CAS  Google Scholar 

  • Gunadi B, Edwards CA, Arancon NQ (2002) Changes in trophic structure of soil arthropods after the application of vermicomposts. Eur J Soil Biol 38:161–165

    Article  Google Scholar 

  • Gupta DK, Rai UN, Tripathi RD, Inouhe M (2002) Impacts of fly-ash on soil and plant responses. J Plant Res 115:401–409

    Article  PubMed  CAS  Google Scholar 

  • Haimi J, Fritze H, Moilanen P (2000) Responses of soil decomposer animals to wood ash fertilisation and burning in a coniferous forest stand. For Ecol Manage 129:53–61

    Article  Google Scholar 

  • Hakkila P (1986) Recycling of wood and bark ash. State-of-the-art review. IEA Forest Energy Agreement, Helsinki

    Google Scholar 

  • Hartmann R (2003) Studien zur standortgerechten Kompotanwendung, vol 39, Bremer Beiträge zur Geographie und Raumplanung. Universität Bremen, Bremen

    Google Scholar 

  • Hattori T (1973) Microbial life in the soil. Marcel Dekker, New York

    Google Scholar 

  • Haynes RJ, Mokolobate MS (2001) Amelioration of Al toxicity and P deficiency in acid soils by additions of organic residues: a critical review of the phenomenon and the mechanisms involved. Nutr Cycl Agroecosyst 59:47–63

    Article  CAS  Google Scholar 

  • Helyar KR, Porter WM (1989) Soil acidification its measurement and the processes involved. In: Robson AD (ed) Soil acidity and plant growth. Academic, Sydney, pp 61–101

    Google Scholar 

  • Hue NV (1992) Correcting soil acidity of a highly weathered ultisol with chicken manure and sewage sludge. Commun Soil Sci Plant Anal 23:241–264

    Article  Google Scholar 

  • Huhta V, Hyvönen R, Koskenniemi A, Vilkamaa P, Kaasalainen P, Sulander M (1986) Response of soil fauna to fertilization and manipulation of pH in coniferous forests. Acta For Fenn 195:1–30

    Google Scholar 

  • Iglesias-Jimenez E, Alvarez CE (1993) Apparent availability of nitrogen in composted municipal refuse. Biol Fertil Soils 16:313–318

    Article  CAS  Google Scholar 

  • Innerebner G, Knapp B, Vasara T, Romantschuk M, Insam H (2006) Traceability of ammonia-oxidizing bacteria in compost-treated soils. Soil Biol Biochem 38:1092–1100

    Article  CAS  Google Scholar 

  • Insam H, Merschak P (1997) Nitrogen leaching from forest soil cores after amending organic recycling products and fertilizers. Waste Manage Res 15:277–291

    CAS  Google Scholar 

  • Interdepartmental Committee on the Redevelopment of Contaminated Land (ICRCL) (1987) Guidance on the assessment and redevelopment of contaminated land. Guidance note 59/83. Department of the Environment, London

    Google Scholar 

  • Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386

    Article  Google Scholar 

  • Kahl JS, Fernandez IJ, Rustad LE, Peckenham J (1996) Threshold application rates of wood ash to an acidic forest soil. J Environ Qual 25:220–227

    Article  CAS  Google Scholar 

  • Kalra N, Jain MC, Joshi HC, Choudhary R, Harit RC, Vatsa BK, Sharma SK, Kumar V (1998) Fly ash as a soil conditioner and fertilizer. Bioresour Technol 64:163–167

    Article  CAS  Google Scholar 

  • Khanna PK, Raison RJ, Falkiner RA (1994) Chemical properties of ash derived from Eucalyptus litter and its effects on forest soils. For Ecol Manage 66:107–125

    Article  Google Scholar 

  • Knox OGG, Killham K, Mullins CE, Wilson MJ (2003) Nematode-enhanced microbial colonization of the wheat rhizosphere. FEMS Microbiol Lett 225:227–233

    Article  PubMed  CAS  Google Scholar 

  • Kochian LV, Hoekenga OA, Pineros MA (2004) How do crop plants tolerate acid soils? – mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol 55(459):493

    Google Scholar 

  • Kuba T, Tschöll A, Partl C, Meyer K, Insam H (2008) Wood ash admixture to organic wastes improves compost and its performance. Agric Ecosyst Environ 27:43–49

    Article  Google Scholar 

  • Kumar A (2009) A conceptual comparison of bioenergy options for using mountain pine beetle infested wood in Western Canada. Bioresour Technol 100:387–399

    Article  PubMed  CAS  Google Scholar 

  • Lamp D (1996) Wirkung von Müllklärschlamm- und Bioabfallkompost auf physikalische Bodeneigenschaften in mehrjährigen Feldversuchen auf schluffigen Lehmböden. Lehrstuhl für Pflanzenernährung, TU München-Weihenstephan, Freising-Weihenstephan, p 58

    Google Scholar 

  • Lavelle P (1997) Faunal activities and soil processes: adaptive strategies that determine ecosystem function. Adv Ecol Res 27:93–132

    Article  Google Scholar 

  • Lavelle P (2002) Functional domains in soils. Ecol Res 17:441–450

    Article  Google Scholar 

  • Lavelle P, Spain AV (2001) Soil ecology. Kluwer, Dordrecht, p 654

    Google Scholar 

  • Lerner BR, Utzinger JD (1986) Wood ash as a soil liming material. Hortscience 21(1):76–78

    CAS  Google Scholar 

  • Leroy BLM, Van den Bossche A, NeveS D, Reheul D, Moens M (2007) The quality of exogenous organic matter: short-term influence on earthworm abundance. Eur J Soil Biol 43:S196–S200

    Article  CAS  Google Scholar 

  • Liiri M, Haimi J, Setala H (2002a) Community composition of soil microarthropods of acid forest soils as affected by wood ash application. Pedobiologia 46:108–124

    Article  Google Scholar 

  • Liiri M, Setala H, Haimi J, Pennanen T, Fritze H (2002b) Soil processes are not influenced by the functional complexity of soil decomposer food webs under disturbance. Soil Biol Biochem 34:1009–1020

    Article  CAS  Google Scholar 

  • Lundkvist H (1998) Wood ash effects on enchytraeid and earthworm abundance and enchytraeid cadmium content. Scand J For Res 2:86–95

    Google Scholar 

  • Lynch J, Benedetti A, Insam H, Smalla C, Torsvik V, Nuti M, Nannipieri P (2004) Microbial diversity in soil: ecological theories, the contribution of molecular techniques and the impact of transgenic plants and transgenic microorganisms – a review. Biol Fertil Soils 40:363–385

    Article  CAS  Google Scholar 

  • Ma JF, Ryan PR, Delhaize E (2001) Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci 6:273–278

    Article  PubMed  CAS  Google Scholar 

  • Mayer R (1998) Soil acidification and cycling of metal elements: cause-effect relationships with regard to forestry practices and climatic changes. Agric Ecosyst Environ 67:145–152

    Article  CAS  Google Scholar 

  • Melero S, Madejon E, Ruiz JC, Herencia JF (2007) Chemical and biochemical properties of a clay soil under dryland agriculture system as affected by organic fertilization. Eur J Agron 26:327–334

    Article  CAS  Google Scholar 

  • Misra MK, Ragland KW, Baker AJ (1993) Wood ash composition as a function of furnace temperature. Biomass Bioenergy 4:103–116

    Article  CAS  Google Scholar 

  • Mkhabela MS, Warman PR (2005) The influence of municipal solid waste compost on yield, soil phosphorus availability and uptake by two vegetable crops grown in a Pugwash sandy loam soil in Nova Scotia. Agric Ecosyst Environ 106:57–67

    Article  CAS  Google Scholar 

  • Moreira R, Sousa JP, Canhoto C (2008) Biological testing of a digested sewage sludge and derived composts. Bioresour Technol 99:8382–8389

    Article  PubMed  CAS  Google Scholar 

  • Mossor-Pietraszewska T (2001) Effect of aluminium on plant growth and metabolism. Acta Biochim Pol 3:673–686

    Google Scholar 

  • Muse JK, Mitchell CC (1995) Paper mill boiler ash and lime by-products as soil liming materials. Agron J 87:432–438

    Article  Google Scholar 

  • Naylor LM, Schmidt EJ (1986) Agricultural use of wood ash as a fertiliser and liming material. TAPPI J 69:114–119

    CAS  Google Scholar 

  • Neale SP, Shah Z, Adams WA (1997) Changes in microbial biomass and nitrogen turnover in acidic organic soils following liming. Soil Biol Biochem 29:1463–1474

    Article  CAS  Google Scholar 

  • Nieminen JK (2011) Wood ash effects on soil fauna and interactions with carbohydrate supply: a mini-review. In: Insam H, Knapp BA (eds) Recycling of biomass ashes. Springer, Heidelberg, pp 45–56

    Google Scholar 

  • Nkana JCV, Demeyer A, Verloo MG (1998) Chemical effects food ash on plant growth in tropical acid soils. Bioresour Technol 63:251–260

    Article  Google Scholar 

  • Nkana JCV, Demeyer A, Verloo MG (2002) Effect of wood ash application on soil solution chemistry of tropical acid soils: incubation study. Bioresour Technol 85:323–325

    Article  PubMed  CAS  Google Scholar 

  • Noble AD, Zenneck I, Randall PJ (1996) Leaf litter ash alkalinity and neutralisation of soil acidity. Plant Soil 179:293–302

    Article  CAS  Google Scholar 

  • Ohno T (1992) Neutralization of soil acidity and release of phosphorus and potassium by wood ash. J Environ Qual 21:433–438

    Article  Google Scholar 

  • Ohno T, Erich MS (1990) Effect of wood ash application on soil pH and soil test nutrient levels. Agric Ecosyst Environ 32:223–239

    Article  Google Scholar 

  • Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276:734–740

    Article  PubMed  CAS  Google Scholar 

  • Perkiömäki J, Levula T, Fritze H (2004) A reciprocal decomposition experiment of Scots pine needles 19 yr after wood ash fertilization. Soil Biol Biochem 36:731–734

    Article  CAS  Google Scholar 

  • Perrott KW (1978) The influence of organic matter extracted from humified clover on the properties of amorphous aluminosilicates. I. Surface charge. Aust J Soil Res 16:327–339

    Article  CAS  Google Scholar 

  • Perucci P (1990) Effect of the addition of municipal solid-waste compost on microbial biomass and enzyme activities in soil. Biol Fertil Soils 10:221–226

    Google Scholar 

  • Perucci P, Monaci E, Casucci C, Vischetti C (2006) Effect of recycling wood ash on microbiological and biochemical properties of soils. Agron Sustain Dev 26:157–165

    Article  CAS  Google Scholar 

  • Pietikäinen J, Fritze H (1995) Clear-cutting and prescribed burning in coniferous forest: comparison of effects on soil fungal and total microbial biomass, respiration activity and nitrification. Soil Biol Biochem 27:101–109

    Article  Google Scholar 

  • Pitman RM (2006) Wood ash use in forestry – a review of the environmental impacts. Forestry 79:563–588

    Article  Google Scholar 

  • Poss R, Smith CJ, Dunin FX, Angus JF (1995) Rate of soil acidification under wheat in a semi arid environment. Plant Soil 177:85–100

    Article  CAS  Google Scholar 

  • Prosser JI, Nicol GW (2008) Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment. Environ Microbiol 10:2931–2941

    Article  PubMed  CAS  Google Scholar 

  • Rigby D, Caceres D (2001) Organic farming and the sustainability of agricultural systems. Agric Syst 68:21–40

    Article  Google Scholar 

  • Ros M, Klammer S, Knapp B, Aichberger K, Insam H (2006) Long-term effects of compost amendment of soil on functional and structural diversity and microbial activity. Soil Use Manage 22:209–218

    Article  Google Scholar 

  • Rout GR, Samantaray S, Das P (2001) Aluminium toxicity in plants: a review. Agronomie 21:3–21

    Article  Google Scholar 

  • Ryckeboer J, Mergaert J, Vaes K, Klammer S, De Clercq D, Coosemans J, Insam H, Swings J (2003) A survey of bacteria and fungi occurring during composting and self-heating processes. Ann Microbiol 53:349–410

    Google Scholar 

  • Saarsalmi A, Kukkola M, Moilanen M, Arola M (2006) Long-term effects of ash and N fertilization on stand growth, tree nutrient status and soil chemistry in a Scots pine stand. For Ecol Manage 235:116–128

    Article  Google Scholar 

  • Samir Amous (1999) The role of wood energy in Africa. In: Rivero SI (ed) Wood energy today for tomorrow. Food and Agriculture Organization of the United Nations, Rome. http://www.fao.org/docrep/x2740E/x2740e00.htm#acro. Accessed 11 Apr 2010

  • Sanchez PA (2002) Soil fertility and hunger in Africa. Science 295:2019–2020

    Article  PubMed  CAS  Google Scholar 

  • Sanchez PA, Uehara G (1980) Management considerations for acid soils with high phosphorus fixation capacity. In: Khasawneh FE, Sample EC, Kamprath EJ (eds) The role of phosphorus in agriculture. ASA, Madison, pp 471–509

    Google Scholar 

  • Schiemenz K, Kern J, Paulsen HP, Bachmann S, Eichler-Löbermann B (2011) Phosphorus fertilizing effects of biomass ashes. In: Insam H, Knapp BA (eds) Recycling of biomass ashes. Springer, Heidelberg, pp 17–31

    Google Scholar 

  • Shainberg I, Sumner ME, Miller WP, Farina MPW, Pavan MA, Fey MV (1989) In: Stewart BA (ed) Use of gypsum on soils: a review, vol 9, Advanced in soil science. Springer, New York, pp 1–111

    Google Scholar 

  • Sharma VK, Canditelli M, Fortuna F, Cornacchia G (1997) Processing of urban and agro industrial residues by aerobic composting: review. Energy Convers Manage 38:453–478

    Article  CAS  Google Scholar 

  • Shipton PJ (1986) Infection by foot and root rot pathogens and subsequent damage. In: Wood RKS, Jellis GK (eds) Plant diseases, infection, damage and loss. Blackwell, Oxford, pp 139–155

    Google Scholar 

  • Siddiqui ZA, Singh LP (2005) Effects of fly ash, Pseudomonas striata and Rhizobium on the reproduction of nematode Meloidogyne incognita and on the growth and transpiration of pea. J Environ Biol 26:117–122

    PubMed  Google Scholar 

  • Stamatiadis S, Werner M, Buchanan M (1999) Field assessment of soil quality as affected by compost and fertilizer application in a broccoli field (San Benito County, California). Appl Soil Ecol 12:217–225

    Article  Google Scholar 

  • Stockinger M, Kuba T, Plank R, Meyer K, Insam H (2006) Die Verwertung von Holzaschen ein lösbares Problem? Österr Forstztg 117:20–21

    Google Scholar 

  • Sumner ME, Noble AD (2003) Soil acidification: the world story. In: Rengel Z (ed) Handbook of soil acidity. Marcel Dekker, New York, p 12

    Google Scholar 

  • Takeuchi M, Kawahata H, Gupta LP, Itouga M, Sakakibara H, Ohta H, Komai T, Ono Y (2009) Chemistry of fly ash and cyclone ash leachate from waste materials and effects of ash leachates on bacterial growth, nitrogen-transformation activity, and metal accumulation. J Hazard Mater 165:967–973

    Article  PubMed  CAS  Google Scholar 

  • Tate RL (2000) Soil microbiology, 2nd edn. Wiley, New York

    Google Scholar 

  • Ulery AL, Graham RC, Amrhein C (1993) Wood ash composition and soil pH following intense burning. Soil Sci 156:358–364

    Article  CAS  Google Scholar 

  • Ulrich B (1994) Nutrient and acid-base budgets of central European forest ecosystems. In: Godbold DL, Hüttermann A (eds) Effects of acid rain on forest processes. Wiley, New York, pp 231–264

    Google Scholar 

  • Ulrich B, Summer ME (1991) Soil acidity. Springer, New York

    Google Scholar 

  • van Bruggen AHC, Semenov AM (2000) In search of biological indicators for soil health and disease suppression. Appl Soil Ecol 15:13–24

    Article  Google Scholar 

  • Vance ED (1996) Land application of wood-fired and combination boiler ashes: an overview. J Environ Qual 25:937–944

    Article  CAS  Google Scholar 

  • Verma S, Subehia SK, Sharma SP (2005) Phosphorus fractions in an acid soil continuously fertilized with mineral and organic fertilizers. Biol Fertil Soils 41:295–300

    Google Scholar 

  • Vieira FCB, Bayer C, Mietniczuk J, Zanatta J, Bissani CA (2008) Long-term acidification of a Brazilian Acrisol as affected by no till cropping systems and nitrogen fertilizer. Aust J Soil Res 46:17–26

    Article  CAS  Google Scholar 

  • Von Uexküll HR, Mutert E (1995) Global extent, development and economic impact of acid soils. In: Date RA, Grundon NJ, Rayment GE, Probert ME (eds) Plant–soil interactions at low pH: principles and management. Kluwer, Dordrecht, pp 5–19

    Google Scholar 

  • Vorob’eva LA, Avdon’kin AA (2006) Potential soil acidity: notions and parameters. Eurasian Soil Sci 39(4):377–386

    Article  Google Scholar 

  • Walker TW, Syers JK (1976) The fate of phosphorus during pedogenesis. Geoderma 15(1):1–19

    Article  CAS  Google Scholar 

  • Walter I, Martinez F, Cuevas G (2006) Plant and soil responses to the application of composted MSW in a degraded, semiarid shrubland in central Spain. Compost Sci Util 14:147–154

    CAS  Google Scholar 

  • Wardle DA (2002) Islands as model systems for understanding how species affect ecosystem properties. J Biogeogr 29:583–591

    Article  Google Scholar 

  • Werkelin J, Skrifvars BJ, Hupa M (2005) Ash-forming elements in four Scandinavian wood species. Part 1: summer harvest. Biomass Bioenergy 29:451–466

    Article  CAS  Google Scholar 

  • Williams CH (1980) Soil acidification under clover pasture. Aust J Exp Agric 20:561–567

    Article  Google Scholar 

  • Wong MTF, Swift RS (2003) Role of organic matter in alleviating soil acidity. In: Rengel Z (ed) Handbook of soil acidity. Marcel Dekker, New York, pp 337–358

    Google Scholar 

  • Yunlong C, Smit B (1994) Sustainability in agriculture: a general review. Agric Ecosyst Environ 49:299–307

    Article  Google Scholar 

  • Zhan G, Erich MS, Ohno T (1996) Release of trace elements from wood ash by nitric acid. Water Air Soil Pollut 88:297–311

    Article  CAS  Google Scholar 

  • Zhang M, Heaney D, Henriquez B, Solberg E, Bittner E (2006) A four-year study on influence of biosolids/MSW cocompost application in less productive soils in Alberta: nutrient dynamics. Compost Sci Util 14:68–80

    Google Scholar 

  • Zimmermann S, Frey B (2002) Soil respiration and microbial properties in an acid forest soil: effects of wood ash. Soil Biol Biochem 34:1727–1737

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blaise Pascal Bougnom .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bougnom, B.P., Knapp, B.A., Etoa, FX., Insam, H. (2011). Possible Use of Wood Ash and Compost for Improving Acid Tropical Soils. In: Insam, H., Knapp, B. (eds) Recycling of Biomass Ashes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19354-5_7

Download citation

Publish with us

Policies and ethics