Skip to main content

Mechanics of the Meristems

  • Chapter
  • First Online:
Mechanical Integration of Plant Cells and Plants

Part of the book series: Signaling and Communication in Plants ((SIGCOMM,volume 9))

Abstract

In this chapter, the structure, function, and growth of apical meristems and cambium are discussed from a perspective of mechanics. We first characterize the meristems and point to implications of the symplasm, apoplasm, and organismal concepts for our understanding of plant morphogenesis. Then we discuss the symplastic (coordinated) growth and a putative role of principal directions of growth and mechanical stress tensor in the meristem function, also explaining how the principal directions are manifested in cellular pattern and cell behavior. The present knowledge on the mechanics of meristems, in particular on the distribution of mechanical stress and on the mechanical properties of the meristems, is to a large extent speculative. Our objectives are to present and discuss the available empirical data and hypotheses on the meristem mechanics, and the evidence on the role of mechanical factors in plant morphogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aida M, Tasaka M (2006) Morphogenesis and patterning at the organ boundaries in the higher plant shoot apex. Plant Mol Biol 60:915–928

    PubMed  CAS  Google Scholar 

  • Anastasiou E, Kenz S, Gerstung M, MacLean D, Timmer J, Fleck Ch, Lenhard M (2007) Control of plant organ size by KLUH/CYP78A5-dependent intercellular signaling. Dev Cell 13:843–856

    PubMed  CAS  Google Scholar 

  • Baluška F, Šamaj J, Wojtaszek P, Volkmann D, Menzel D (2003) Cytoskeleton-plasma membrane-cell wall continuum in plants. Emerging links revisited. Plant Physiol 133:482–491

    PubMed  Google Scholar 

  • Barbier de Reuille P, Bohn-Courseau I, Godin Ch, Traas J (2005) A protocol to analyse cellular dynamics during plant development. Plant J 44:1045–1053

    CAS  Google Scholar 

  • Barlow PW, Carr DJ (1984) Positional controls in plant development. Cambridge University Press, Cambridge

    Google Scholar 

  • Baskin TJ (2005) Anisotropic expansion of the plant cell wall. Annu Rev Cell Dev Biol 21:203–222

    PubMed  CAS  Google Scholar 

  • Breuil-Broyer S, Morel P, de Almeida-Engler J, Coustham V, Negrutiu I, Trehin C (2004) High-resolution boundary analysis during Arabidopsis thaliana flower development. Plant J 38:182–192

    PubMed  CAS  Google Scholar 

  • Brouzés E, Farge E (2004) Interplay of mechanical deformation and patterned gene expression in developing embryos. Curr Opin Gen Dev 14:367–374

    Google Scholar 

  • Brown CL (1964) The influence of external pressure on the differentiation of cells and tissues cultured in vitro. In: Zimmermann MH (ed) The formation of wood in forest trees. Academic, New York, pp 389–404

    Google Scholar 

  • Brown CL, Sax K (1962) The influence of pressure on the differentiation of secondary tissues. Am J Bot 49:683–691

    Google Scholar 

  • Campilho A, Garcia B, vd Toorn H, Wijk H v, Campilho A, Scheres B (2006) Time-lapse analysis of stem-cell divisions in the Arabidopsis thaliana root meristem. Plant J 48:619–627

    PubMed  CAS  Google Scholar 

  • Clowes FAL (1959) Apical meristems of roots. Biol Rev 34:501–529

    Google Scholar 

  • Clowes FAL (1961) Apical meristems. Blackwell Scientific, Oxford

    Google Scholar 

  • Coen E, Rolland-Lagan A-G, Matthews M, Bangham A, Prusinkiewicz S (2004) The genetics of geometry. Proc Natl Acad Sci USA 101:4728–4735

    PubMed  CAS  Google Scholar 

  • Cosgrove DJ (2000) Loosening of plant cell walls by expansins. Nature 407:321–326

    PubMed  CAS  Google Scholar 

  • Crowell EF, Bischoff V, Desprez T, Rolland A, Stierhof Y-D, Schumacher K, Gonneau M, Höfte H, Vernhettes S (2009) Pausing of Golgi bodies on microtubules regulates secretion of cellulose synthase complexes in Arabidopsis. Plant Cell 21:1141–1154

    PubMed  CAS  Google Scholar 

  • Day SJ, Lawrence PA (2000) Measuring dimensions: the regulation of size and shape. Development 127:2977–2987

    PubMed  CAS  Google Scholar 

  • Derbyshire P, McCann MC, Roberts K (2007) Restricted cell elongation in Arabidopsis hypocotyls is associated with a reduced average pectin esterification level. BMC Plant Biol 7:31

    PubMed  Google Scholar 

  • Dumais J (2009) Plant morphogenesis: a role for mechanical signals. Curr Biol 19:207–208

    Google Scholar 

  • Dumais J, Kwiatkowska D (2002) Analysis of surface growth in shoot apices. Plant J 31:229–241

    PubMed  Google Scholar 

  • Dumais J, Steele CS (2000) New evidence for the role of mechanical forces in the shoot apical meristem. J Plant Growth Regul 19:7–18

    PubMed  CAS  Google Scholar 

  • Dumais J, Shaw SL, Steele ChR, Long SR, Ray PM (2006) An anisotropic-viscoplastic model of plant cell morphogenesis by tip growth. Int J Dev Biol 50:209–222

    PubMed  Google Scholar 

  • Erickson RO (1966) Relative elemental rates and anisotropy of growth in area: a computer programme. J Exp Bot 51:390–403

    Google Scholar 

  • Erickson RO (1986) Symplastic growth and symplasmic transport. Plant Physiol 82:1153

    PubMed  CAS  Google Scholar 

  • Erickson RO, Mitchelini FJ (1957) The plastochron index. Am J Bot 44:297–305

    Google Scholar 

  • Erickson RO, Sax KB (1956) Rates of cell division and cell elongation in the growth of the primary root of Zea mays. Proc Am Phil Soc 100:499–515

    Google Scholar 

  • Feldman LJ, Torrey JG (1976) The isolation and culture in vitro of the quiescent center of Zea mays. Am J Bot 63:345–355

    Google Scholar 

  • Fiorani F, Beemster GTS (2006) Quantitative analyses of cell division in plants. Plant Mol Biol 60:963–979

    PubMed  CAS  Google Scholar 

  • Fisher DD, Cyr RJ (1998) Extending the microtubule/microfibril paradigm. Plant Physiol 116:1043–1051

    PubMed  CAS  Google Scholar 

  • Flanders DJ, Rawlins DJ, Shaw PJ, Lloyd CW (1990) Nucleus-associated microtubules help determine the division plane of plant epidermal cells: avoidance of four-way junctions and role of cell geometry. J Cell Biol 110:1111–1122

    PubMed  CAS  Google Scholar 

  • Fleming AJ (2006) The co-ordination of cell division, differentiation and morphogenesis in the shoot apical meristem: a perspective. J Exp Bot 57:25–32

    PubMed  CAS  Google Scholar 

  • Fleming AJ, McQueen-Mason S, Mandel T, Kuhlemeier C (1997) Induction of leaf primordia by the cell wall protein expansin. Science 276:1415–1418

    CAS  Google Scholar 

  • Fleming AJ, Caderas D, Wehrli E, McQueen-Mason S, Kuhlemeier C (1999) Analysis of expansin-induced morphogenesis on the apical meristem of tomato. Planta 208:166–174

    CAS  Google Scholar 

  • Fosket DE (1994) Plant growth and development. A molecular approach. Academic, San Diego

    Google Scholar 

  • Foster AS (1939) Problems of structure, growth and evolution in the shoot apex of seed plants. Bot Rev 5:454–470

    Google Scholar 

  • Foster AS (1943) Zonal structure and growth of the shoot apex in Microcycas calocoma (Miq.) A. DC. Am J Bot 30:56–73

    Google Scholar 

  • Fung YC (1984) Biomechanics. Springer, New York

    Google Scholar 

  • Gandar PW (1980) Analysis of growth and cell production in root apices. Bot Gaz 144:1–10

    Google Scholar 

  • Gandar PW (1983a) Growth in root apices I. The kinematic description of growth. Bot Gaz 144:1–10

    Google Scholar 

  • Gandar PW (1983b) Growth in root apices II. Deformation and rate of deformation. Bot Gaz 144:11–19

    Google Scholar 

  • Grandjean O, Vernoux T, Laufs P, Belcram K, Mizukami Y, Traas J (2004) In vivo analysis of cell division, cell growth, and differentiation at the shoot apical meristem in Arabidopsis. Plant Cell 16:74–87

    PubMed  CAS  Google Scholar 

  • Green PB (1962) Mechanism for plant cellular morphogenesis. Science 138:1404–1405

    PubMed  CAS  Google Scholar 

  • Green PB (1992) Pattern formation in shoots: a likely role for minimal energy configurations of the tunica. Int J Plant Sci 153(Suppl):59–75

    Google Scholar 

  • Green PB (1997) Expansin and morphology: a role for biophysics. Trends Plant Sci 2:365–366

    Google Scholar 

  • Green PB (1999) Expression of pattern in plants: combining molecular and calculus-based biophysical paradigms. Am J Bot 86:1059–1076

    PubMed  CAS  Google Scholar 

  • Green PB, Poethig RS (1982) Biophysics of the extension and initiation of plant organs. In: Subtelny S, Green PB (eds) Developmental order: its origin and regulation. Alan R. Liss, New York, pp 485–509

    Google Scholar 

  • Green PB, Selker JML (1991) Mutual alignments of cell walls, cellulose, and cytoskeletons: their role in meristems. In: Lloyd CW (ed) The cytoskeletal basis of plant growth and form. Academic, London, pp 303–322

    Google Scholar 

  • Green PB, Erickson RO, Richmond PA (1970) On the physical basis of cell morphogenesis. Annu NY Acad Sci 175:712–731

    Google Scholar 

  • Green PB, Steele CS, Rennich SC (1996) Phyllotactic patterns: a biophysical mechanism for their origin. Ann Bot 77:515–527

    Google Scholar 

  • Gunning BES, Hughes JE, Hardham AR (1978) Formative and proliferative cell divisions, cell differentiation, and developmental changes in the meristem of Azolla roots. Planta 143:121–144

    Google Scholar 

  • Hamant O, Traas J (2009) The mechanics behind plant development. New Phytol 185:369–385

    PubMed  Google Scholar 

  • Hamant O, Heisler MG, Jönsson H, Krupiński P, Uyttewaal M, Bokov P, Corson F, Sahlin P, Boudaoud A, Meyerowitz M, Couder Y, Traas J (2008) Developmental pattering by mechanical signals in Arabidopsis. Science 322:1650–1655

    PubMed  CAS  Google Scholar 

  • Hejnowicz Z (1980) Tensional stress in the cambium and its developmental significance. Am J Bot 67:1–5

    Google Scholar 

  • Hejnowicz Z (1984) Trajectories of principal directions of growth, natural coordinate system in growing plant organ. Acta Soc Bot Pol 53:301–316

    Google Scholar 

  • Hejnowicz Z (1989) Differential growth resulting in the specification of different types of cellular architecture in root meristems. Environ Exp Bot 29:85–93

    PubMed  CAS  Google Scholar 

  • Hejnowicz Z (1997) Graviresponses in herbs and trees: a major role for the redistribution of tissue and growth stresses. Planta 203:S136–S146

    PubMed  CAS  Google Scholar 

  • Hejnowicz Z (2002) Anatomy and histogenesis of vascular plants [Anatomia i histogeneza roślin naczyniowych]. Wydawnictwo Naukowe PWN, Warszawa (in Polish)

    Google Scholar 

  • Hejnowicz Z, Karczewski J (1993) Modeling of meristematic growth of root apices in a natural coordinate system. Am J Bot 80:309–315

    Google Scholar 

  • Hejnowicz Z, Romberger JA (1984) Growth tensor of plant organs. J Theor Biol 110:93–114

    Google Scholar 

  • Hejnowicz Z, Sievers A (1995) Tissue stresses in organs of herbaceous plants II. Determination in three dimensions in the hypocotyl of sunflower. J Exp Bot 46:1045–2053

    CAS  Google Scholar 

  • Hejnowicz Z, Sievers A (1996) Acid-induced elongation of Reynoutria stems requires tissue stresses. Physiol Plant 98:345–348

    CAS  Google Scholar 

  • Hejnowicz Z, Nakielski J, Hejnowicz K (1984a) Modeling of spatial variations of growth within apical domes by means of growth tensor I. Growth specified on dome axis. Acta Soc Bot Pol 53:17–28

    Google Scholar 

  • Hejnowicz Z, Nakielski J, Hejnowicz K (1984b) Modeling of spatial variations of growth within apical domes by means of growth tensor II. Growth specified on dome surface. Acta Soc Bot Pol 53:301–316

    Google Scholar 

  • Hejnowicz Z, Nakielski J, Włoch W, Bełtowski M (1988) Growth and development of the shoot apex of barley III. Study of growth rate variation by means of the growth tensor. Acta Soc Bot Pol 57:31–50

    Google Scholar 

  • Hejnowicz Z, Rusin A, Rusin T (2000) Tensile tissue stress affects the orientation of cortical microtubules in the epidermis of sunflower hypocotyls. J Plant Growth Regul 19:31–44

    PubMed  CAS  Google Scholar 

  • Hernández LF, Green PB (1993) Transductions for the expression of structural pattern: analysis in sunflower. Plant Cell 5:1725–1738

    PubMed  Google Scholar 

  • Humphrey TV, Bonetta DT, Goring DR (2007) Sentinels at the wall: cell wall receptors and sensors. New Phytol 176:7–21

    PubMed  CAS  Google Scholar 

  • Ingber DE (2003) Tensegrity I Cell structure and hierarchical systems biology. J Cell Sci 116:1157–1173

    PubMed  CAS  Google Scholar 

  • Jaeger J, Irons D, Monk N (2008) Regulative feedback in pattern formation: towards a general relativistic theory of positional information. Development 135:3175–3183

    PubMed  CAS  Google Scholar 

  • Jarvis MC, Briggs SPH, Knox JP (2003) Intercellular adhesion and cell separation in plants. Plant Cell Environ 26:977–989

    Google Scholar 

  • Jiang K, Feldman LJ (2005) Regulation of root apical meristem development. Annu Rev Cell Dev Biol 21:485–509

    PubMed  CAS  Google Scholar 

  • Kaplan DR (1992) The relationship of cells to organisms in plants: problem and implications of an organismal perspective. Int J Plant Sci 153:28–37

    Google Scholar 

  • Karczewska D, Karczewski J, Włoch W, Jura-Morawiec J, Kojs P, Iqbal M, Krawczyszyn J (2009) Mathematical modeling of intrusive growth of fusiform initials in relation to radial growth and expanding cambial circumference in Pinus sylvestris L. Acta Biotheor 57:331–348

    PubMed  CAS  Google Scholar 

  • Kerstens S, Decraemer WF, Verbelen J-P (2001) Cell wall at plant surface behave mechanically like fiber-reinforced composite materials. Plant Physiol 127:381–385

    PubMed  CAS  Google Scholar 

  • Kidner C, Sundaresan V, Roberts K, Dolan L (2000) Clonal analysis of the Arabidopsis root confirms that position, not lineage, determines cell fate. Planta 211:191–199

    PubMed  CAS  Google Scholar 

  • Kwiatkowska D (2004a) Structural integration at the shoot apical meristem: models, measurements, and experiments. Am J Bot 91:1277–1293

    PubMed  Google Scholar 

  • Kwiatkowska D (2004b) Surface growth at the reproductive shoot apex of Arabidopsis thalianapin-formed 1 and wild type. J Exp Bot 55:1021–1032

    PubMed  CAS  Google Scholar 

  • Kwiatkowska D (2008) Flowering and apical meristem growth dynamics. J Exp Bot 59:187–201

    PubMed  CAS  Google Scholar 

  • Kwiatkowska D, Dumais J (2003) Growth and morphogenesis at the vegetative shoot apex of Anagallis arvensis L. J Exp Bot 54:1585–1595

    PubMed  CAS  Google Scholar 

  • Kwiatkowska D, Routier-Kierzkowska A-L (2009) Morphogenesis at the inflorescence shoot apex of Anagallis arvensis: surface geometry and growth in comparison with the vegetative shoot. J Exp Bot 60:3407–3418

    PubMed  CAS  Google Scholar 

  • Lev-Yadun S (2001) Intrusive growth – the plant analog of dendrite and axon growth in animals. New Phytol 150:508–512

    Google Scholar 

  • Lintilhac PM (1974a) Differentiation, organogenesis, and the tectonics of cell wall orientation III. Theoretical consideration of cell wall mechanics. Am J Bot 61:230–237

    Google Scholar 

  • Lintilhac PM (1974b) Differentiation, organogenesis, and the tectonics of cell wall orientation II. Separation of stresses in a two-dimensional model. Am J Bot 61:135–140

    Google Scholar 

  • Lintilhac PM, Vesecky TB (1980) Mechanical stress and cell wall orientation in plant. I. Photoelastic derivation of principal stresses; with a discussion of a concept of axillarity and the significance of the “arcuate shell zone”. Am J Bot 67:1477–1483

    Google Scholar 

  • Lintilhac PM, Vesecky TB (1981) Mechanical stress and cell wall orientation in plants. II. The application of controlled directional stress to growing plants; with a discussion on the nature of the wound reaction. Am J Bot 68:1222–1230

    Google Scholar 

  • Lintilhac PM, Vesecky TB (1984) Stress-induced alignment of division plane in plant tissues grown in vitro. Nature 307:363–364

    Google Scholar 

  • Lloyd CW (1991a) How does the cytoskeleton read the laws of geometry in aligning the division plane of plant cells? Development (Suppl) 1:55–65

    Google Scholar 

  • Lloyd CW (1991b) Cytoskeletal elements of the phragmosome establish the division plane in vacuolated higher plant cells. In: Lloyd L (ed) The cytoskeletal basis of plant growth and form. Academic, London, pp 245–257

    Google Scholar 

  • Lynch TM, Lintilhac PM (1997) Mechanical signals in plant development: a new method for single cell studies. Dev Biol 181:246–256

    PubMed  CAS  Google Scholar 

  • Lyndon RF (1968) Changes in volume and cell number in the different regions of shoot apex of Pisum during a single plastochron. Ann Bot 32:371–390

    Google Scholar 

  • Lyndon RF (1994) Control of organogenesis at the shot apex. New Phytol 128:1–18

    Google Scholar 

  • Martynov LA (1975) A morphogenetic mechanism involving instability of initial form. J Theor Biol 52:471–480

    PubMed  CAS  Google Scholar 

  • Miwa H, Kinoshita A, Fukuda H, Sawa S (2009) Plant meristems: CLAVATA3/ESR-related signaling in the shoot apical meristem and the root apical meristem. J Plant Res 122:31–39

    PubMed  CAS  Google Scholar 

  • Nakayama N, Kuhlemeier C (2008) Leaf development: untangling the spirals. Curr Biol 19:71–74

    Google Scholar 

  • Nakielski J (1987) Spatial variations of growth within domes having different patterns of principal growth directions. Acta Soc Bot Pol 56:611–623

    Google Scholar 

  • Nakielski J (1991) Distribution of linear growth rates in different directions in root apical meristems. Acta Soc Bot Pol 60:77–86

    Google Scholar 

  • Nakielski J (1992) Regeneration in the root apex: modelling study by means of the growth tensor. In: Karalis TK (ed) Mechanics of swelling. NATO ASI Series H 64, pp 179–191

    Google Scholar 

  • Nakielski J (2008) The tensor-based model for growth and cell divisions of the root apex I. The significance of principal directions. Planta 228:179–189

    PubMed  CAS  Google Scholar 

  • Nakielski J, Barlow PW (1995) Principal direction of growth and the generation of cell patterns in wild-type and gib-1 mutant roots of tomato (Lycopersicon esculentum Mill.) grown in vitro. Planta 196:30–39

    CAS  Google Scholar 

  • Nakielski J, Hejnowicz Z (2003) The description of growth of plant organs: a continuous approach based on the growth tensor. In: Nation J et al. (eds) Formal description of developing systems, NATO science series II, vol 121. Kluwer Academic, Dordrecht, pp 119–136

    Google Scholar 

  • Nelson CM, Jean RP, Tan JL, Liu WF, Sniadecki NJ, Spector AA, Chen CS (2005) Emergent patterns of growth controlled by multicellular form and mechanics. Proc Natl Acad Sci USA 102:11594–11599

    PubMed  CAS  Google Scholar 

  • Newell AC, Shipman PD, Sun Z (2008) Phyllotaxis: cooperation and competition between mechanical and biochemical processes. J Theor Biol 251:421–439

    PubMed  CAS  Google Scholar 

  • Niklas KJ, Paolillo DJ (1998) Preferential states of longitudinal tension in the outer tissues of Taraxacum officinale (Asteraceae) peduncles. Am J Bot 85:1068–1081

    CAS  Google Scholar 

  • Palmer JH, Marc J (1982) Wound-induced initiation of involucral bracts and florets in the developing sunflower inflorescence. Plant Cell Physiol 23:1401–1409

    Google Scholar 

  • Paredez AR, Somerville CR, Ehrhardt DW (2006) Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312:1491–1495

    PubMed  CAS  Google Scholar 

  • Paredez AR, Persson S, Ehrhardt DW, Somerville CR (2008) Genetic evidence that cellulose synthase activity influences microtubule cortical array organization. Plant Physiol 147:1723–1734

    PubMed  CAS  Google Scholar 

  • Patwari P, Lee RT (2008) Mechanical control of tissue morphogenesis. Circ Res 103:234–243

    PubMed  CAS  Google Scholar 

  • Peaucelle A, Louvet R, Johansen JN, Höfte H, Laufs P, Pelloux J, Mouille G (2008) Arabidopsis phyllotaxis is controlled by the methyl-esterification status of cell-wall pectins. Curr Biol 18:1943–1948

    PubMed  CAS  Google Scholar 

  • Peters WS, Tomos AD (1996) The history of tissues tension. Ann Bot 77:657–665

    PubMed  CAS  Google Scholar 

  • Peters WS, Hagemann W, Tomos AD (2000) What makes plants different? Principles of extracellular matrix function in ‘soft’ plant tissues. Comp Biochem Physiol A 125:151–167

    CAS  Google Scholar 

  • Pien S, Wyrzykowska J, McQueen-Mason S, Smart C, Fleming A (2001) Local expression of expansin induces the entire process of leaf development and modifies leaf shape. Proc Natl Acad Sci USA 98:11812–11817

    PubMed  CAS  Google Scholar 

  • Preston RD (1964) Structural and mechanical aspects of plant cell walls with particular reference to synthesis and growth. In: Zimmermann MH (ed) The formation of wood in forest trees. Academic, New York, pp 169–188

    Google Scholar 

  • Priestley JH (1930) Studies in the physiology of cambial activity II. The concept of sliding growth. New Phytol 29:96–140

    Google Scholar 

  • Probine MC, Barber NF (1966) The structure and plastic properties of the cell wall of Nitella in relation to extension growth. Aust J Biol Sci 19:439–457

    Google Scholar 

  • Reddy GV, Heisler MG, Ehrhardt DW, Meyerowitz EM (2004) Real-time lineage analysis reveals oriented cell divisions associated with morphogenesis at the shoot apex of Arabidopsis thaliana. Development 131:4225–4237

    PubMed  CAS  Google Scholar 

  • Reinhardt D, Wittwer F, Mandel T, Kuhlemeier C (1998) Localized upregulation of a new expansin gene predicts the site of leaf formation in the tomato meristem. Plant Cell 10:1427–1437

    PubMed  CAS  Google Scholar 

  • Richards OW, Kavanagh AJ (1943) The analysis of the relative growth gradients and changing form of growing organisms illustrated by tobacco leaf. Am Nat 77:385–399

    Google Scholar 

  • Rolland-Lagan A-G, Coen E, Impey SJ, Bangham JA (2005) A computational method for inferring growth parameters and shape changes during development based on clonal analysis. J Theor Biol 232:157–177

    PubMed  Google Scholar 

  • Romberger JA, Hejnowicz Z, Hill JF (1993) Plant structure: function and development. Springer, Berlin

    Google Scholar 

  • Routier-Kierzkowska A-L, Kwiatkowska D (2008) New stereoscopic reconstruction protocol for scanning electron microscope images and its application to in vivo replicas of the shoot apical meristem. Funct Plant Biol 35:1034–1046

    Google Scholar 

  • Sachs J (1887) Lecture XXVII: Relations between growth and cell-division in the embryonic tissues. In: Lectures in plant physiology. Clarendon, Oxford, pp 431–459

    Google Scholar 

  • Savaldi-Goldstein S, Chory J (2008) Growth coordination and the shoot epidermis. Curr Opin Plant Biol 11:42–48

    PubMed  CAS  Google Scholar 

  • Scheres B (2007) Stem-cell niches: nursery rhymes across kingdoms. Nat Cell Biol 8:345–354

    CAS  Google Scholar 

  • Schopfer P (2006) Biomechanics of plant growth. Am J Bot 93:1415–1425

    PubMed  Google Scholar 

  • Schüepp O (1926) Meristeme. Handbuch der Pflanzenanatomie Ab. I. Teil 2: Histologie. Verlag von Gebrüder Borntraeger, Berlin

    Google Scholar 

  • Selker JML, Steucek GL, Green PB (1992) Biophysical mechanisms for morphogenetic progressions at the shoot apex. Dev Biol 153:29–43

    PubMed  CAS  Google Scholar 

  • Siedlecka A, Wiklund S, Péronne M-A, Micheli F, Leśniewska J, Sethson I, Edlund U, Richard L, Sundberg B, Mellerowicz EJ (2008) Pectin methyl esterase inhibits intrusive and symplastic cell growth in developing wood cells of Populus. Plant Physiol 146:554–565

    PubMed  CAS  Google Scholar 

  • Silk WK (1984) Quantitative descriptions of development. Annu Rev Plant Physiol 35:479–518

    Google Scholar 

  • Silk WK, Lord EM, Eckard KJ (1989) Growth patterns inferred from anatomical records: empirical tests using longisections of roots of Zea mays L. Plant Physiol 90:708–713

    PubMed  CAS  Google Scholar 

  • Sinnott EW (1960) Plant morphogenesis. McGraw-Hill, New York

    Google Scholar 

  • Sinnott EW, Bloch R (1941) The relative position of cell walls in developing plant tissues. Am J Bot 28:607–617

    Google Scholar 

  • Skalak RG, Dasgupta M, Moss E, Otten P, Dullemeijer Vilmann H (1982) Analytical description of growth. J Theor Biol 94:555–577

    PubMed  CAS  Google Scholar 

  • Smith RS, Guyomarc’h S, Mandel T, Reinhard D, Kuhlemeier C (2006) A plausible model of phyllotaxis. Proc Natl Acad Sci USA 103:1301–1306

    PubMed  CAS  Google Scholar 

  • Stahl Y, Wink RH, Ingram GC, Simon R (2009) A signaling module controlling the stem cell niche in Arabidopsis root meristems. Curr Biol 19:1–6

    Google Scholar 

  • Steele CR (2000) Shell stability related to pattern formation in plants. J Appl Mech 67:237–247

    Google Scholar 

  • Stobbe H, Schmitt U, Eckstein D, Dujesiefken D (2002) Developmental stages and fine structure of surface callus formed after debarking of living lime trees (Tilia sp.). Ann Bot 89:773–782

    PubMed  CAS  Google Scholar 

  • Struik DL (1988) Lectures on classical differential geometry. Dover, New York

    Google Scholar 

  • Szymanski DB, Cosgrove DJ (2009) Dynamic coordination of cytoskeletal and cell wall systems during plant cell morphogenesis. Curr Biol 19:R800–R811

    PubMed  CAS  Google Scholar 

  • Telewski FW (2006) A unified hypothesis of mechanoperception in plants. Am J Bot 93:1466–1476

    PubMed  Google Scholar 

  • Théry M, Racine V, Pépin A, Piel M, Chen Y, Sibarita J-B, Bornens M (2005) The extracellular matrix guides the orientation of the cell division axis. Nat Cell Biol 7:947–953

    PubMed  Google Scholar 

  • Thompson D’Arcy W (1942) On growth and form: a new edition. Cambridge University Press, Cambridge

    Google Scholar 

  • Traas J, Doonan JH (2001) Cellular basis of shoot apical meristem development. Int Rev Cytol 208:161–206

    PubMed  CAS  Google Scholar 

  • Uyttewaal M, Traas J, Hamant O (2009) Integrating physical stress, growth, and development. Curr Opin Plant Biol 13:1–7

    Google Scholar 

  • Van der Weele CM, Jiang HS, Palaniappan KK, Ivanov VB, Palaniappan K, Baskin TI (2003) A new algorithm for computational image analysis of deformable motion at high spatial and temporal resolution applied to root growth. Roughly uniform elongation in the meristem and also, after an abrupt acceleration, in the elongation zone. Plant Physiol 132:1138–1148

    PubMed  Google Scholar 

  • Wang CX, Wang L, Thomas CR (2004) Modelling the mechanical properties of single suspension-cultured tomato cells. Ann Bot 93:443–453

    PubMed  CAS  Google Scholar 

  • Wang CX, Wang L, McQueen-Mason SJ, Pritchard J, Thomas CR (2008) pH and expansin action on single suspension-cultured tomato (Lycopersicon esculentum) cells. J Plant Res 121:527–534

    PubMed  CAS  Google Scholar 

  • Wasteneys GO (2004) Progress in understanding the role of microtubules in plant cells. Curr Opin Plant Biol 7:651–660

    PubMed  CAS  Google Scholar 

  • Wei C, Lintilhac PM (2003) Loss of stability – a new model for stress relaxation in plant cell walls. J Theor Biol 224:305–312

    PubMed  CAS  Google Scholar 

  • Wei C, Lintilhac LS, Lintilhac PM (2006) Loss of stability, pH, and the anisotropic extensibility of Chara cell walls. Planta 223:1058–1067

    PubMed  CAS  Google Scholar 

  • Wiese A, Christ MM, Virnich O, Schurr U, Walter A (2007) Spatio-temporal leaf growth patterns of Arabidopsis thaliana and evidence for sugar control of the diel leaf growth cycle. New Phytol 174:752–761

    PubMed  CAS  Google Scholar 

  • Williams MH, Green PB (1988) Sequential scanning electron microscopy of a growing plant meristem. Protoplasma 147:77–79

    Google Scholar 

  • Wolpert L (1994) Positional information and pattern formation in development. Dev Genet 15:485–490

    PubMed  CAS  Google Scholar 

  • Wyrzykowska J, Fleming AJ (2003) Cell division pattern influences gene expression in the shoot apical meristem. Proc Natl Acad Sci USA 100:5561–5566

    PubMed  CAS  Google Scholar 

  • Wyrzykowska J, Pien S, Shen WH, Fleming AJ (2002) Manipulation of leaf shape by modulation of cell division. Development 129:957–964

    PubMed  CAS  Google Scholar 

  • Zhou J, Wang B, Li Y, Wang Y, Zhu L (2006) Responses of chrysanthemum cells to mechanical stimulation require intact microtubules and plasma membrane-cell wall adhesion. J Plant Growth Regul 26:55–68

    CAS  Google Scholar 

  • Zhou J, Wang B, Zhu L, Li Y, Wang Y (2007) A system for studying the effect of mechanical stress on the elongation behavior of immobilized plant cells. Colloids Surf B Biointerfaces 49:165–174

    Google Scholar 

  • Zonia L, Munnik T (2007) Life under pressure: hydrostatic pressure in cell growth and function. Trends Plant Sci 12:90–97

    PubMed  CAS  Google Scholar 

Download references

Dedication and Acknowledgements

We dedicate this chapter to Professor Zygmunt Hejnowicz on the occasion of his 80th birthday and also his nearly as long amazement and fascination with nature, and devotion to plant biology.

We would like to thank colleagues from the Department of Biophysics and Morphogenesis of Plants, University of Silesia, for all the inseminating discussions, Dr. Marcin Lipowczan for the help in preparation of the figures presenting the V field and GT indicatrices, and Dr. Agata Burian for the comments of this manuscript. Work in our lab is partly supported by a bilateral grant from the Ministry of Science and Higher Education, Poland and the Institut National de la Recherche Agronomique, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorota Kwiatkowska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kwiatkowska, D., Nakielski, J. (2011). Mechanics of the Meristems. In: Wojtaszek, P. (eds) Mechanical Integration of Plant Cells and Plants. Signaling and Communication in Plants, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19091-9_6

Download citation

Publish with us

Policies and ethics