Skip to main content

Mechanics and Regulation of Cell Shape During the Cell Cycle

  • Chapter
  • First Online:
Cell Cycle in Development

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS))

Abstract

Many cell types undergo dramatic changes in shape throughout the cell cycle. For individual cells, a tight control of cell shape is crucial during cell division, but also in interphase, for example during cell migration. Moreover, cell cycle-related cell shape changes have been shown to be important for tissue morphogenesis in a number of developmental contexts. Cell shape is the physical result of cellular mechanical properties and of the forces exerted on the cell. An understanding of the causes and repercussions of cell shape changes thus requires knowledge of both the molecular regulation of cellular mechanics and how specific changes in cell mechanics in turn effect global shape changes. In this chapter, we provide an overview of the current knowledge on the control of cell morphology, both in terms of general cell mechanics and specifically during the cell cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aigouy B, Farhadifar R, Staple DB, Sagner A, Röper JC, Jülicher F, Eaton S (2010) Cell flow reorients the axis of planar polarity in the wing epithelium of Drosophila. Cell 142:773–786

    CAS  PubMed  Google Scholar 

  • Arber S, Barbayannis FA, Hanser H, Schneider C, Stanyon CA, Bernard O, Caroni P (1998) Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 393:805–809

    CAS  PubMed  Google Scholar 

  • Arcuri F, Papa S, Meini A, Carducci A, Romagnoli R, Bianchi L, Riparbelli MG, Sanchez J-C, Palmi M, Tosi P, Cintorino M (2005) The translationally controlled tumor protein is a novel calcium binding protein of the human placenta and regulates calcium handling in trophoblast cells. Biol Reprod 73:745–751

    CAS  PubMed  Google Scholar 

  • Azoury J, Lee KW, Georget V, Rassinier P, Leader B, Verlhac MH (2008) Spindle positioning in mouse oocytes relies on a dynamic meshwork of actin filaments. Curr Biol 18:1514–1519

    CAS  PubMed  Google Scholar 

  • Baena-López LA, Baonza A, García-Bellido A (2005) The orientation of cell divisions determines the shape of Drosophila organs. Curr Biol 15:1640–1644

    PubMed  Google Scholar 

  • Baker J, Garrod D (1993) Epithelial cells retain junctions during mitosis. J Cell Sci 104:415–425

    PubMed  Google Scholar 

  • Bamburg JR, McGough A, Ono S (1999) Putting a new twist on actin: ADF/cofilins modulate actin dynamics. Trends Cell Biol 9:364–370

    CAS  PubMed  Google Scholar 

  • Barros CS, Phelps CB, Brand AH (2003) Drosophila nonmuscle myosin II promotes the asymmetric segregation of cell fate determinants by cortical exclusion rather than active transport. Dev Cell 5:829–840

    CAS  PubMed  Google Scholar 

  • Bazile F, Pascal A, Arnal I, Le Clainche C, Chesnel F, Kubiak JZ (2009) Complex relationship between TCTP, microtubules and actin microfilaments regulates cell shape in normal and cancer cells. Carcinogenesis 30:555–565

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bereiter-Hahn J (2005) Mechanics of crawling cells. Med Eng Phys 27:743–753

    CAS  PubMed  Google Scholar 

  • Bereiter-Hahn J, Anderson OR, Reif WE (1987) Cytomechanics. The mechanical basis of cell form and structure. Springer, Berlin, Germany

    Google Scholar 

  • Berlin RD, Oliver JM (1980) Surface functions during mitosis. II. Quantitation of pinocytosis and kinetic characterization of the mitotic cycle with a new fluorescence technique. J Cell Biol 85:660–671

    CAS  PubMed  Google Scholar 

  • Berlin RD, Oliver JM, Walter RJ (1978) Surface functions during mitosis I: phagocytosis, pinocytosis and mobility of surface-bound ConA. Cell 15:327–341

    CAS  PubMed  Google Scholar 

  • Bhatt AS, Erdjument-Bromage H, Tempst P, Craik CS, Moasser MM (2005) Adhesion signaling by a novel mitotic substrate of src kinases. Oncogene 24:5333–5343

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bittig T, Wartlick O, González-Gaitán M, Jülicher F (2009) Quantification of growth asymmetries in developing epithelia. Eur Phys J E 30:93–99

    CAS  PubMed  Google Scholar 

  • Blanchard GB, Kabla AJ, Schultz NL, Butler LC, Sanson B, Gorfinkiel N, Mahadevan L, Adams RJ (2009) Tissue tectonics: morphogenetic strain rates, cell shape change and intercalation. Nat Methods 6:458–464

    CAS  PubMed  Google Scholar 

  • Blot J, Chartrain I, Roghi C, Philippe M, Tassan J-P (2002) Cell cycle regulation of pEg3, a new Xenopus protein kinase of the KIN1/PAR-1/MARK family. Dev Biol 241:327–338

    CAS  PubMed  Google Scholar 

  • Bluemink JG, de Laat SW (1973) New membrane formation during cytokinesis in normal and cytochalasin B-treated eggs of Xenopus laevis. J Cell Biol 59:89–108

    CAS  PubMed  Google Scholar 

  • Boal D (2002) Mechanics of the cell. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Borghi N, Nelson WJ (2009) Intercellular adhesion in morphogenesis: molecular and biophysical considerations. Curr Top Dev Biol 89:1–32

    CAS  PubMed  Google Scholar 

  • Bos JL (2005) Linking rap to cell adhesion. Curr Opin Cell Biol 17:123–128

    CAS  PubMed  Google Scholar 

  • Boucrot E, Kirchhausen T (2007) Endosomal recycling controls plasma membrane area during mitosis. Proc Natl Acad Sci USA 104:7939–7944

    CAS  PubMed  Google Scholar 

  • Boucrot E, Kirchhausen T (2008) Mammalian cells change volume during mitosis. PLoS One 3:e1477

    PubMed Central  PubMed  Google Scholar 

  • Bradley R, Woods A, Carruthers L, Rees D (1980) Cytoskeleton changes in fibroblast adhesion and detachment. J Cell Sci 43:379–390

    Google Scholar 

  • Bray D, White JG (1988) Cortical flow in animal cells. Science 239:883–888

    CAS  PubMed  Google Scholar 

  • Bretscher A, Edwards K, Fehon RG (2002) ERM proteins and merlin: integrators at the cell cortex. Nat Rev Mol Cell Biol 3:586–599

    CAS  PubMed  Google Scholar 

  • Bringmann H, Hyman AA (2005) A cytokinesis furrow is positioned by two consecutive signals. Nature 436:731–734

    CAS  PubMed  Google Scholar 

  • Britch M, Allen TD (1980) The modulation of cellular contractility and adhesion by trypsin and EGTA. Exp Cell Res 125:221–231

    CAS  PubMed  Google Scholar 

  • Brochard-Wyart F, Borghi N, Cuvelier D, Nassoy P (2006) Hydrodynamic narrowing of tubes extruded from cells. Proc Natl Acad Sci USA 103:7660–7663

    CAS  PubMed  Google Scholar 

  • Brodland GW, Conte V, Cranston PG, Veldhuis J, Narasimhan S, Hutson MS, Jacinto A, Ulrich F, Baum B, Miodownik M (2010) Video force microscopy reveals the mechanics of ventral furrow invagination in Drosophila. Proc Natl Acad Sci USA 107:22111–22116

    Google Scholar 

  • Brown MJ, Hallam JA, Colucci-Guyon E, Shaw S (2001) Rigidity of circulating lymphocytes is primarily conferred by vimentin intermediate filaments. J Immunol 166:6640–6646

    CAS  PubMed  Google Scholar 

  • Burgess DR, Chang F (2005) Site selection for the cleavage furrow at cytokinesis. Trends Cell Biol 15:156–162

    CAS  PubMed  Google Scholar 

  • Burgess RW, Deitcher DL, Schwarz TL (1997) The synaptic protein Syntaxin1 is required for cellularization of Drosophila embryos. J Cell Biol 138:861–875

    CAS  PubMed  Google Scholar 

  • Butler LC, Blanchard GB, Kabla AJ, Lawrence NJ, Welchman DP, Mahadevan L, Adams RJ, Sanson B (2009) Cell shape changes indicate a role for extrinsic tensile forces in Drosophila germ-band extension. Nat Cell Biol 11:859–864

    CAS  PubMed  Google Scholar 

  • Cabernard C, Prehoda KE, Doe CQ (2010) A spindle-independent cleavage furrow positioning pathway. Nature 467:91–94

    CAS  PubMed  Google Scholar 

  • Caille N, Thoumine O, Tardy Y, Meister J-J (2002) Contribution of the nucleus to the mechanical properties of endothelial cells. J Biomech 35:177–187

    PubMed  Google Scholar 

  • Cao LG, Wang YL (1990b) Mechanism of the formation of contractile ring in dividing cultured animal cells. I. Recruitment of preexisting actin filaments into the cleavage furrow. J Cell Biol 110:1089–1095

    CAS  PubMed  Google Scholar 

  • Cao LG, Wang YL (1990a) Mechanism of the formation of contractile ring in dividing cultured animal cells. II. Cortical movement of microinjected actin filaments. J Cell Biol 111:1905–1911

    CAS  PubMed  Google Scholar 

  • Carlsson AE (2003) Growth velocities of branched actin networks. Biophys J 84:2907–2918

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carreno S, Kouranti I, Glusman ES, Fuller MT, Echard A, Payre F (2008) Moesin and its activating kinase Slik are required for cortical stability and microtubule organization in mitotic cells. J Cell Biol 180:739–746

    CAS  PubMed  Google Scholar 

  • Chackalaparampil I, Shalloway D (1988) Altered phosphorylation and activation of PP60c-src during fibroblast mitosis. Cell 52:801–810

    CAS  PubMed  Google Scholar 

  • Charras G, Paluch E (2008) Blebs lead the way: how to migrate without lamellipodia. Nat Rev Mol Cell Biol 9:730–736

    CAS  PubMed  Google Scholar 

  • Charras GT, Yarrow JC, Horton MA, Mahadevan L, Mitchison TJ (2005) Non-equilibration of hydrostatic pressure in blebbing cells. Nature 435:365–369

    CAS  PubMed Central  PubMed  Google Scholar 

  • Charras GT, Coughlin M, Mitchison TJ, Mahadevan L (2008) Life and times of a cellular bleb. Biophys J 94:1836–1853

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chartrain I, Couturier A, Tassan J-P (2006) Cell-cycle-dependent cortical localization of pEg3 protein kinase in Xenopus and human cells. Biol Cell 98:253–263

    CAS  PubMed  Google Scholar 

  • Cheng NN, Kirby CM, Kemphues KJ (1995) Control of cleavage spindle orientation in Caenorhabditis elegans: the role of the genes par-2 and par-3. Genetics 139:549–559

    CAS  PubMed  Google Scholar 

  • Chew T-L, Masaracchia RA, Goeckeler ZM, Wysolmerski RB (1998) Phosphorylation of non-muscle myosin II regulatory light chain by p21-activated kinase (γ-PAK). J Muscle Res Cell Motil 19:839–854

    CAS  PubMed  Google Scholar 

  • Chou YH, Bischoff JR, Beach D, Goldman RD (1990) Intermediate filament reorganization during mitosis is mediated by p34cdc2 phosphorylation of vimentin. Cell 62:1063–1071

    CAS  PubMed  Google Scholar 

  • Chu YS, Dufour S, Thiery JP, Perez E, Pincet F (2005) Johnson-Kendall-Roberts theory applied to living cells. Phys Rev Lett 94:028102

    PubMed  Google Scholar 

  • Concha ML, Adams RJ (1998) Oriented cell divisions and cellular morphogenesis in the zebrafish gastrula and neurula: a time-lapse analysis. Development 125:983–994

    CAS  PubMed  Google Scholar 

  • Coniglio SJ, Zavarella S, Symons MH (2008) Pak1 and Pak2 mediate tumor cell invasion through distinct signaling mechanisms. Mol Cell Biol 28:4162–4172

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cramer LP, Mitchison TJ (1997) Investigation of the mechanism of retraction of the cell margin and rearward flow of nodules during mitotic cell rounding. Mol Biol Cell 8:109–119

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cui C, Yang X, Chuai M, Glazier JA, Weijer CJ (2005) Analysis of tissue flow patterns during primitive streak formation in the chick embryo. Dev Biol 284:37–47

    CAS  PubMed  Google Scholar 

  • Cunningham CC, Gorlin JB, Kwiatkowski DJ, Hartwig JH, Janmey PA, Byers R, Stossel TP (1992) Actin-binding protein requirement for cortical stability and efficient locomotion. Science 255:325–327

    CAS  PubMed  Google Scholar 

  • Cuvelier D, Théry M, Chu Y-S, Dufour S, Thiéry J-P, Bornens M, Nassoy P, Mahadevan L (2007) The universal dynamics of cell spreading. Curr Biol 17:694–699

    CAS  PubMed  Google Scholar 

  • Dai J, Ting-Beall HP, Hochmuth RM, Sheetz MP, Titus MA (1999) Myosin I contributes to the generation of resting cortical tension. Biophys J 77:1168–1176

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dao VT, Dupuy AG, Gavet O, Caron E, de Gunzburg J (2009) Dynamic changes in Rap1 activity are required for cell retraction and spreading during mitosis. J Cell Sci 122:2996–3004

    CAS  PubMed  Google Scholar 

  • David-Pfeuty T, Nouvian-Dooghe Y (1990) Immunolocalization of the cellular src protein in interphase and mitotic NIH c-src overexpresser cells. J Cell Biol 111:3097–3116

    CAS  PubMed  Google Scholar 

  • Davidson L, von Dassow M, Zhou J (2009) Multi-scale mechanics from molecules to morphogenesis. Int J Biochem Cell Biol 41:2147–2162

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dayel MJ, Akin O, Landeryou M, Risca V, Mogilner A, Mullins RD (2009) In silico reconstitution of actin-based symmetry breaking and motility. PLoS Biol 7:e1000201

    PubMed Central  PubMed  Google Scholar 

  • DeBiasio RL, LaRocca GM, Post PL, Taylor DL (1996) Myosin II transport, organization, and phosphorylation: evidence for cortical flow/solation-contraction coupling during cytokinesis and cell locomotion. Mol Biol Cell 7:1259–1282

    CAS  PubMed Central  PubMed  Google Scholar 

  • DiMilla PA, Barbee K, Lauffenburger DA (1991) Mathematical model for the effects of adhesion and mechanics on cell migration speed. Biophys J 60:15–37

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dinarina A, Pugieux C, Corral MM, Loose M, Spatz J, Karsenti E, Nédélec F (2009) Chromatin shapes the mitotic spindle. Cell 138:502–513

    CAS  PubMed  Google Scholar 

  • Diz-Muñoz A, Krieg M, Bergert M, Ibarlucea-Benitez I, Muller DJ, Paluch E, Heisenberg CP (2010) Control of directed cell migration in vivo by membrane-to-cortex attachment. PLoS Biol 8:e1000544

    Google Scholar 

  • Drewes G, Ebneth A, Preuss U, Mandelkow E-M, Mandelkow E (1997) MARK, a novel family of protein kinases that phosphorylate microtubule-associated proteins and trigger microtubule disruption. Cell 89:297–308

    CAS  PubMed  Google Scholar 

  • Effler JC, Kee Y-S, Berk JM, Tran MN, Iglesias PA, Robinson DN (2006) Mitosis-specific mechanosensing and contractile-protein redistribution control cell shape. Curr Biol 16:1962–1967

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eppinga RD, Li Y, Lin JL-C, Mak AS, Lin JJ-C (2006) Requirement of reversible caldesmon phosphorylation at P21-activated kinase-responsive sites for lamellipodia extensions during cell migration. Cell Motil Cytoskeleton 63:543–562

    CAS  PubMed  Google Scholar 

  • Erickson CA, Trinkaus JP (1976) Microvilli and blebs as sources of reserve surface membrane during cell spreading. Exp Cell Res 99:375–384

    CAS  PubMed  Google Scholar 

  • Estecha A, Sánchez-Martín L, Puig-Kröger A, Bartolomé RA, Teixidó J, Samaniego R, Sánchez-Mateos P (2009) Moesin orchestrates cortical polarity of melanoma tumour cells to initiate 3D invasion. J Cell Sci 122:3492–3501

    CAS  PubMed  Google Scholar 

  • Evans E, Yeung A (1989) Apparent viscosity and cortical tension of blood granulocytes determined by micropipet aspiration. Biophys J 56:151–160

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fackler OT, Grosse R (2008) Cell motility through plasma membrane blebbing. J Cell Biol 181:879–884

    CAS  PubMed  Google Scholar 

  • Farhadifar R, Röper J-C, Aigouy B, Eaton S, Jülicher F (2007) The influence of cell mechanics, cell-cell interactions, and proliferation on epithelial packing. Curr Biol 17:2095–2104

    CAS  PubMed  Google Scholar 

  • Fehon RG, McClatchey AI, Bretscher A (2010) Organizing the cell cortex: the role of ERM proteins. Nat Rev Mol Cell Biol 11:276–287

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fink J, Carpi N, Betz T, Bétard A, Chebah M, Azioune A, Bornens M, Sykes C, Fetler L, Cuvelier D, Piel M (2011) External forces control mitotic spindle positioning. Nat Cell Biol (in press)

    Google Scholar 

  • Fishkind D, Wang YL (1993) Orientation and three-dimensional organization of actin filaments in dividing cultured cells. J Cell Biol 123:837–848

    CAS  PubMed  Google Scholar 

  • Fishkind D, Cao L, Wang YL (1991) Microinjection of the catalytic fragment of myosin light chain kinase into dividing cells: effects on mitosis and cytokinesis. J Cell Biol 114:967–975

    CAS  PubMed  Google Scholar 

  • Flemming W (1895) Zur Mechanik der Zelltheilung. Archiv für Mikroscopische Anatomie und Entwicklungsmechanik 46:696–701

    Google Scholar 

  • Folkman J, Moscona A (1978) Role of cell shape in growth control. Nature 273:345–349

    CAS  PubMed  Google Scholar 

  • Foster DB, Shen L-H, Kelly J, Thibault P, Van Eyk JE, Mak AS (2000) Phosphorylation of Caldesmon by p21-activated kinase. J Biol Chem 275:1959–1965

    CAS  PubMed  Google Scholar 

  • Fujibuchi T, Abe Y, Takeuchi T, Imai Y, Kamei Y, Murase R, Ueda N, Shigemoto K, Yamamoto H, Kito K (2005) AIP1/WDR1 supports mitotic cell rounding. Biochem Biophys Res Commun 327:268–275

    CAS  PubMed  Google Scholar 

  • Gauthier NC, Rossier OM, Mathur A, Hone JC, Sheetz MP (2009) Plasma membrane area increases with spread area by exocytosis of a GPI-anchored protein compartment. Mol Biol Cell 20:3261–3272

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gavet O, Pines J (2010) Progressive activation of CyclinB1-Cdk1 coordinates entry to mitosis. Dev Cell 18:533–543

    CAS  PubMed Central  PubMed  Google Scholar 

  • Geldmacher-Voss B, Reugels AM, Pauls S, Campos-Ortega JA (2003) A 90˚ rotation of the mitotic spindle changes the orientation of mitoses of zebrafish neuroepithelial cells. Development 130:3767–3780

    CAS  PubMed  Google Scholar 

  • Giet O, Van Bockstaele DR, Di Stefano I, Huygen S, Greimers R, Beguin Y, Gothot A (2002) Increased binding and defective migration across fibronectin of cycling hematopoietic progenitor cells. Blood 99:2023–2031

    CAS  PubMed  Google Scholar 

  • Glotzer M (2001) Animal cell cytokinesis. Annu Rev Cell Dev Biol 17:351–386

    CAS  PubMed  Google Scholar 

  • Glotzer M (2004) Cleavage furrow positioning. J Cell Biol 164:347–351

    CAS  PubMed  Google Scholar 

  • Gong Y, Mo C, Fraser SE (2004) Planar cell polarity signalling controls cell division orientation during zebrafish gastrulation. Nature 430:689–693

    CAS  PubMed  Google Scholar 

  • Gorfinkiel N, Blanchard GB, Adams RJ, Martinez Arias A (2009) Mechanical control of global cell behaviour during dorsal closure in Drosophila. Development 136:1889–1898

    CAS  PubMed  Google Scholar 

  • Goss JW, Toomre DK (2008) Both daughter cells traffic and exocytose membrane at the cleavage furrow during mammalian cytokinesis. J Cell Biol 181:1047–1054

    CAS  PubMed  Google Scholar 

  • Gotz M, Huttner WB (2005) The cell biology of neurogenesis. Nat Rev Mol Cell Biol 6:777–788

    PubMed  Google Scholar 

  • Graham JM, Sumner MCB, Curtis DH, Pasternak CA (1973) Sequence of events in plasma membrane assembly during the cell cycle. Nature 246:291–295

    CAS  PubMed  Google Scholar 

  • Gray D, Plusa B, Piotrowska K, Na J, Tom B, Glover DM, Zernicka-Goetz M (2004) First cleavage of the mouse embryo responds to change in egg shape at fertilization. Curr Biol 14:397–405

    CAS  PubMed  Google Scholar 

  • Habela CW, Sontheimer H (2007) Cytoplasmic volume condensation is and integral part of mitosis. Cell Cycle 6:1613–1620

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hanakam F, Albrecht R, Eckerskorn C, Matzner M, Gerisch G (1996) Myristoylated and non-myristoylated forms of the pH sensor protein hisactophilin II: intracellular shuttling to plasma membrane and nucleus monitored in real time by a fusion with green fluorescent protein. EMBO J 15:2935–2943

    CAS  PubMed  Google Scholar 

  • Hara K (1971) Cinematographic observation of “surface contraction waves” (SCW) during the early cleavage of axolotl eggs. Dev Genes Evol 167:183–186

    Google Scholar 

  • Hara K, Tydeman P, Kirschner M (1980) A cytoplasmic clock with the same period as the division cycle in Xenopus eggs. Proc Natl Acad Sci USA 77:462–466

    CAS  PubMed  Google Scholar 

  • Haubensak W, Attardo A, Denk W, Huttner WB (2004) Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: a major site of neurogenesis. Proc Natl Acad Sci USA 101:3196–3201

    CAS  PubMed  Google Scholar 

  • Henderson D, Rohrschneider L (1987) Cytoskeletal association of pp 60src: the transforming protein of the rous sarcoma virus. Exp Cell Res 168:411–421

    CAS  PubMed  Google Scholar 

  • Hertzler PL, Clark WH Jr (1992) Cleavage and gastrulation in the shrimp Sicyonia ingentis: invagination is accompanied by oriented cell division. Development 116:127–140

    CAS  PubMed  Google Scholar 

  • Hilgenfeldt S, Erisken S, Carthew RW (2008) Physical modeling of cell geometric order in an epithelial tissue. Proc Natl Acad Sci USA 105:907–911

    CAS  PubMed  Google Scholar 

  • Hiramoto Y (1957) The thickness of the cortex and the refractive index of the protoplasm in Sea urchin eggs. Embryologia 3:361–374

    Google Scholar 

  • Hochmuth RM (2000) Micropipette aspiration of living cells. J Biomech 33:15–22

    CAS  PubMed  Google Scholar 

  • Hoffman BD, Crocker JC (2009) Cell mechanics: dissecting the physical responses of cells to force. Annu Rev Biomed Eng 11:259–288

    CAS  PubMed  Google Scholar 

  • Hotulainen P, Paunola E, Vartiainen MK, Lappalainen P (2005) Actin-depolymerizing factor and Cofilin-1 play overlapping roles in promoting rapid F-actin depolymerization in mammalian nonmuscle cells. Mol Biol Cell 16:649–664

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hufnagel L, Teleman AA, Rouault H, Cohen SM, Shraiman BI (2007) On the mechanism of wing size determination in fly development. Proc Natl Acad Sci USA 104:3835–3840

    CAS  PubMed  Google Scholar 

  • Hutson MS, Tokutake Y, Chang MS, Bloor JW, Venakides S, Kiehart DP, Edwards GS (2003) Forces for morphogenesis investigated with laser microsurgery and quantitative modeling. Science 300:145–149

    CAS  PubMed  Google Scholar 

  • Ingber DE (1993) The riddle of morphogenesis: a question of solution chemistry or molecular cell engineering? Cell 75:1249–1252

    CAS  PubMed  Google Scholar 

  • Ingber DE (2003) Tensegrity I. Cell structure and hierarchical systems biology. J Cell Sci 116:1157–1173

    CAS  PubMed  Google Scholar 

  • Iwamoto H, Nakamuta M, Tada S, Sugimoto R, Enjoji M, Nawata H (2000) A p160ROCK-specific inhibitor, Y-27632, attenuates rat hepatic stellate cell growth. J Hepatol 32:762–770

    CAS  PubMed  Google Scholar 

  • Iwasaki T, Shinkai K, Mukai M, Yoshioka K, Fujii Y, Nakahara K, Matsuda H, Akedo H (1995) Cell-cycle-dependent invasion in vitro by rat ascites hepatoma cells. Int J Cancer 63:282–287

    CAS  PubMed  Google Scholar 

  • Jaffe AB, Hall A (2005) Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 21:247–269

    CAS  PubMed  Google Scholar 

  • Janmey PA, McCulloch CA (2007) Cell mechanics: integrating cell responses to mechanical stimuli. Annu Rev Biomed Eng 9:1–34

    CAS  PubMed  Google Scholar 

  • Janoueix-Lerosey I, Fontenay M, Tobelem G, Tavitian A, Polakis P, Degunzburg J (1994) Phosphorylation of Rap1GAP during the cell cycle. Biochem Biophys Res Commun 202:967–975

    CAS  PubMed  Google Scholar 

  • Janson ME, Loughlin R, Loïodice I, Fu C, Brunner D, Nédélec FJ, Tran PT (2007) Crosslinkers and motors organize dynamic microtubules to form stable bipolar arrays in fission yeast. Cell 128:357–368

    CAS  PubMed  Google Scholar 

  • Käfer J, Hayashi T, Marée AFM, Carthew RW, Graner F (2007) Cell adhesion and cortex contractility determine cell patterning in the Drosophila retina. Proc Natl Acad Sci USA 104:18549–18554

    PubMed  Google Scholar 

  • Kaji N, Muramoto A, Mizuno K (2008) LIM kinase-mediated Cofilin phosphorylation during mitosis is required for precise spindle positioning. J Biol Chem 283:4983–4992

    CAS  PubMed  Google Scholar 

  • Kamasaki T, Osumi M, Mabuchi I (2007) Three-dimensional arrangement of F-actin in the contractile ring of fission yeast. J Cell Biol 178:765–771

    CAS  PubMed  Google Scholar 

  • Keren K, Pincus Z, Allen GM, Barnhart EL, Marriott G, Mogilner A, Theriot JA (2008) Mechanism of shape determination in motile cells. Nature 453:475–480

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kimmel CB, Warga RM, Kane DA (1994) Cell cycles and clonal strings during formation of the zebrafish central nervous system. Development 120:265–276

    CAS  PubMed  Google Scholar 

  • Kimura K, Ito M, Amano M, Chihara K, Fukata Y, Nakafuku M, Yamamori B, Feng J, Nakano T, Okawa K, Iwamatsu A, Kaibuchi K (1996) Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-Kinase). Science 273:245–248

    CAS  PubMed  Google Scholar 

  • King JS, Veltman DM, Georigiou M, Baum B, Insall RH (2010) SCAR/WAVE is activated at mitosis and drives myosin-independent cytokinesis. J Cell Sci 123:2246–2255

    CAS  PubMed  Google Scholar 

  • Kiosses WB, Daniels RH, Otey C, Bokoch GM, Schwartz MA (1999) A role for P21-activated kinase in endothelial cell migration. J Cell Biol 147:831–844

    CAS  PubMed  Google Scholar 

  • Knutton S, Sumner MC, Pasternak CA (1975) Role of microvilli in surface changes of synchronized P815Y mastocytoma cells. J Cell Biol 66:568–576

    CAS  PubMed  Google Scholar 

  • Krieg M, Arboleda-Estudillo Y, Puech PH, Kafer J, Graner F, Muller DJ, Heisenberg CP (2008a) Tensile forces govern germ-layer organization in zebrafish. Nat Cell Biol 10:429–436

    CAS  PubMed  Google Scholar 

  • Krieg M, Helenius J, Heisenberg CP, Muller DJ (2008b) A bond for a lifetime: employing membrane nanotubes from living cells to determine receptor-ligand kinetics. Angew Chem Int Ed Engl 47:9775–9777

    CAS  PubMed  Google Scholar 

  • Kruse K, Joanny J-F, Jülicher F, Prost J, Sekimoto K (2004) Asters, vortices, and rotating spirals in active gels of polar filaments. Phys Rev Lett 92:078101

    CAS  PubMed  Google Scholar 

  • Kruse K, Joanny J-F, Jülicher F, Prost J, Sekimoto K (2005) Generic theory of active polar gels: a paradigm for cytoskeletal dynamics. Eur Phys J E 16:5–16

    CAS  PubMed  Google Scholar 

  • Kunda P, Pelling AE, Liu T, Baum B (2008) Moesin controls cortical rigidity, cell rounding, and spindle morphogenesis during mitosis. Curr Biol 18:91–101

    CAS  PubMed  Google Scholar 

  • Lamb NJC, Fernandez A, Watrin A, Labbé J-C, Cavadore J-C (1990) Microinjection of p34cdc2 kinase induces marked changes in cell shape, cytoskeletal organization, and chromatin structure in mammalian fibroblasts. Cell 60:151–165

    CAS  PubMed  Google Scholar 

  • Landsberg KP, Farhadifar R, Ranft J, Umetsu D, Widmann TJ, Bittig T, Said A, Jülicher F, Dahmann C (2009) Increased cell bond tension governs cell sorting at the Drosophila anteroposterior compartment boundary. Curr Biol 19:1950–1955

    CAS  PubMed  Google Scholar 

  • Lecuit T, Lenne P-F (2007) Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis. Nat Rev Mol Cell Biol 8:633–644

    CAS  PubMed  Google Scholar 

  • Levi M, Maro B, Shalgi R (2010) The involvement of Fyn kinase in resumption of the first meiotic division in mouse oocytes. Cell Cycle 9:1577–1589

    CAS  PubMed  Google Scholar 

  • Lipowsky R, Sackmann E (1995) Structure and dynamics of membranes. Handbook of biological physics. Elsevier, Amsterdam, The Netherlands

    Google Scholar 

  • Liu XH, Wang X (2004) The deformation of an adherent leukocyte under steady shear flow: a numerical study. J Biomech 37:1079–1085

    CAS  PubMed  Google Scholar 

  • Lomakina EB, Spillmann CM, King MR, Waugh RE (2004) Rheological analysis and measurement of neutrophil indentation. Biophys J 87:4246–4258

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lu B, Roegiers F, Jan LY, Jan YN (2001) Adherens junctions inhibit asymmetric division in the Drosophila epithelium. Nature 409:522–525

    CAS  PubMed  Google Scholar 

  • Ma Q, Geng Y, Xu W, Wu Y, He F, Shu W, Huang M, Du H, Li M (2009) The role of translationally controlled tumor protein in tumor growth and metastasis of colon adenocarcinoma cells. J Proteome Res 9:40–49

    Google Scholar 

  • Mabuchi I, Tsukita S, Sawai T (1988) Cleavage furrow isolated from newt eggs: contraction, organization of the actin filaments, and protein components of the furrow. Proc Natl Acad Sci USA 85:5966–5970

    CAS  PubMed  Google Scholar 

  • Maddox AS, Burridge K (2003) RhoA is required for cortical retraction and rigidity during mitotic cell rounding. J Cell Biol 160:255–265

    CAS  PubMed  Google Scholar 

  • Maroto B, Ye MB, von Lohneysen K, Schnelzer A, Knaus UG (2008) P21-activated kinase is required for mitotic progression and regulates Plk1. Oncogene 27:4900–4908

    CAS  PubMed  Google Scholar 

  • Matzke R, Jacobson K, Radmacher M (2001) Direct, high-resolution measurement of furrow stiffening during division of adherent cells. Nat Cell Biol 3:607–610

    CAS  PubMed  Google Scholar 

  • Maugis B, Brugués J, Nassoy P, Guillen N, Sens P, Amblard F (2010) Dynamic instability of the intracellular pressure drives bleb-based motility. J Cell Sci 123:3884–3892

    CAS  PubMed  Google Scholar 

  • Maupin P, Pollard TD (1986) Arrangement of actin filaments and myosin-like filaments in the contractile ring and of actin-like filaments in the mitotic spindle of dividing HeLa cells. J Ultrastruct Mol Struct Res 94:92–103

    CAS  PubMed  Google Scholar 

  • Mayer M, Depken M, Bois JS, Jülicher F, Grill SW (2010) Anisotropies in cortical tension reveal the physical basis of cortical flow in polarising C. elegans zygotes. Nature 467:617–621

    CAS  PubMed  Google Scholar 

  • Mitchison JM, Swann MM (1954) The mechanical properties of the cell surface. I. The cell elastimeter. J Exp Biol 31:443–460

    Google Scholar 

  • Mitchison TJ (1992) Actin based motility on retraction fibers in mitotic PtK2 cells. Cell Motil Cytoskeleton 22:135–151

    CAS  PubMed  Google Scholar 

  • Mitchison TJ, Charras GT, Mahadevan L (2008) Implications of a poroelastic cytoplasm for the dynamics of animal cell shape. Semin Cell Dev Biol 19:215–223

    CAS  PubMed  Google Scholar 

  • Mitsushima M, Aoki K, Ebisuya M, Matsumura S, Yamamoto T, Matsuda M, Toyoshima F, Nishida E (2010) Revolving movement of a dynamic cluster of actin filaments during mitosis. J Cell Biol 191:453–462

    CAS  PubMed  Google Scholar 

  • Miyata T, Kawaguchi A, Saito K, Kawano M, Muto T, Ogawa M (2004) Asymmetric production of surface-dividing and non-surface-dividing cortical progenitor cells. Development 131:3133–3145

    CAS  PubMed  Google Scholar 

  • Montell DJ (2008) Morphogenetic cell movements: diversity from modular mechanical properties. Science 322:1502–1505

    CAS  PubMed  Google Scholar 

  • Moon A, Drubin DG (1995) The ADF/Cofilin proteins: stimulus-responsive modulators of actin dynamics. Mol Biol Cell 6:1423–1431

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morone N, Fujiwara T, Murase K, Kasai RS, Ike H, Yuasa S, Usukura J, Kusumi A (2006) Three-dimensional reconstruction of the membrane skeleton at the plasma membrane interface by electron tomography. J Cell Biol 174:851–862

    CAS  PubMed  Google Scholar 

  • Mukhina S, Wang YL, Murata-Hori M (2007) Alpha-actinin is required for tightly regulated remodeling of the actin cortical network during cytokinesis. Dev Cell 13:554–565

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nagasaki A, Kanada M, Uyeda TQP (2009) Cell adhesion molecules regulate contractile ring-independent cytokinesis in Dictyostelium discoideum. Cell Res 19:236–246

    CAS  PubMed  Google Scholar 

  • Nambiar R, McConnell RE, Tyska MJ (2009) Control of cell membrane tension by myosin-I. Proc Natl Acad Sci USA 106:11972–11977

    CAS  PubMed  Google Scholar 

  • Nelson CM, Jean RP, Tan JL, Liu WF, Sniadecki NJ, Spector AA, Chen CS (2005) Emergent patterns of growth controlled by multicellular form and mechanics. Proc Natl Acad Sci USA 102:11594–11599

    CAS  PubMed  Google Scholar 

  • Neujahr R, Heizer C, Gerisch G (1997) Myosin II-independent processes in mitotic cells of Dictyostelium discoideum: redistribution of the nuclei, re-arrangement of the actin system and formation of the cleavage furrow. J Cell Sci 110:123–137

    CAS  PubMed  Google Scholar 

  • Norden C, Young S, Link BA, Harris WA (2009) Actomyosin is the main driver of interkinetic nuclear migration in the retina. Cell 138:1195–1208

    CAS  PubMed Central  PubMed  Google Scholar 

  • O'Connell CB, Wang YL (2000) Mammalian spindle orientation and position respond to changes in cell shape in a dynein-dependent fashion. Mol Biol Cell 11:1765–1774

    PubMed Central  PubMed  Google Scholar 

  • Ou G, Stuurman N, D’Ambrosio M, Vale RD (2010) Polarized myosin produces unequal-size daughters during asymmetric cell division. Science 330:677–680

    CAS  PubMed Central  PubMed  Google Scholar 

  • Palecek SP, Loftus JC, Ginsberg MH, Lauffenburger DA, Horwitz AF (1997) Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature 385:537–540

    CAS  PubMed  Google Scholar 

  • Paluch E, Heisenberg C-P (2009) Biology and physics of cell shape changes in development. Curr Biol 19:R790–R799

    CAS  PubMed  Google Scholar 

  • Pasternak C, Spudich J, Elson E (1989) Capping of surface receptors and concomitant cortical tension are generated by conventional myosin. Nature 341:549–551

    CAS  PubMed  Google Scholar 

  • Perez-Mongiovi D, Chang P, Houliston E (1998) A propagated wave of MPF activation accompanies surface contraction waves at first mitosis in Xenopus. J Cell Sci 111:385–393

    CAS  PubMed  Google Scholar 

  • Pfaendtner J, De La Cruz EM, Voth GA (2010) Actin filament remodeling by actin depolymerization factor/cofilin. Proc Natl Acad Sci USA 107:7299–7304

    CAS  PubMed  Google Scholar 

  • Pollard TD (2010) Mechanics of cytokinesis in eukaryotes. Curr Opin Cell Biol 22:50–56

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112:453–465

    CAS  PubMed  Google Scholar 

  • Pollard TD, Wu JQ (2010) Understanding cytokinesis: lessons from fission yeast. Nat Rev Mol Cell Biol 11:149–155

    CAS  PubMed Central  PubMed  Google Scholar 

  • Popowicz GM, Schleicher M, Noegel AA, Holak TA (2006) Filamins: promiscuous organizers of the cytoskeleton. Trends Biochem Sci 31:411–419

    CAS  PubMed  Google Scholar 

  • Pypaert M, Mundy D, Souter E, Labbé JC, Warren G (1991) Mitotic cytosol inhibits invagination of coated pits in broken mitotic cells. J Cell Biol 114:1159–1166

    CAS  PubMed  Google Scholar 

  • Qin Y, Meisen WH, Hao Y, Macara IG (2010) Tuba, a Cdc42 GEF, is required for polarized spindle orientation during epithelial cyst formation. J Cell Biol 189:661–669

    CAS  PubMed  Google Scholar 

  • Rafelski SM, Alberts JB, Odell GM (2009) An experimental and computational study of the effect of ActA polarity on the speed of Listeria monocytogenes actin-based motility. PLoS Comput Biol 5:e1000434

    PubMed Central  PubMed  Google Scholar 

  • Rand RP, Burton AC (1964) Mechanical properties of the red cell membrane. I. Membrane stiffness and intracellular pressure. Biophys J 4:115–135

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rankin S, Kirschner MW (1997) The surface contraction waves of Xenopus eggs reflect the metachronous cell-cycle state of the cytoplasm. Curr Biol 7:451–454

    CAS  PubMed  Google Scholar 

  • Rappaport R (1960) Cleavage of sand dollar eggs under constant tensile stress. J Exp Zool 144:225–231

    PubMed  Google Scholar 

  • Rappaport R (1961) Experiments concerning the cleavage stimulus in sand dollar eggs. J Exp Zool 148:81–89

    CAS  PubMed  Google Scholar 

  • Rappaport R (1996) Cytokinesis in animal cells. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Ratner S, Jasti RK, Heppner GH (1988) Motility of murine lymphocytes during transit through cell cycle. Analysis by a new in vitro assay. J Immunol 140:583–588

    CAS  PubMed  Google Scholar 

  • Raucher D, Sheetz MP (1999) Membrane expansion increases endocytosis rate during mitosis. J Cell Biol 144:497–506

    CAS  PubMed  Google Scholar 

  • Rauzi M, Verant P, Lecuit T, Lenne P-F (2008) Nature and anisotropy of cortical forces orienting Drosophila tissue morphogenesis. Nat Cell Biol 10:1401–1410

    CAS  PubMed  Google Scholar 

  • Reichl EM, Effler JC, Robinson DN (2005) The stress and strain of cytokinesis. Trends Cell Biol 15:200–206

    CAS  PubMed  Google Scholar 

  • Ren Y, Effler JC, Norstrom M, Luo T, Firtel RA, Iglesias PA, Rock RS, Robinson DN (2009) Mechanosensing through cooperative interactions between myosin II and the actin crosslinker cortexillin I. Curr Biol 19:1421–1428

    Google Scholar 

  • Riabowol K, Draetta G, Brizuela L, Vandre D, Beach D (1989) The cdc2 kinase is a nuclear protein that is essential for mitosis in mammalian cells. Cell 57:393–401

    CAS  PubMed  Google Scholar 

  • Riveline D, Zamir E, Balaban NQ, Schwarz US, Ishizaki T, Narumiya S, Kam Z, Geiger B, Bershadsky AD (2001) Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J Cell Biol 153:1175–1186

    CAS  PubMed  Google Scholar 

  • Robinson DN, Spudich JA (2004) Mechanics and regulation of cytokinesis. Curr Opin Cell Biol 16:182–188

    CAS  PubMed  Google Scholar 

  • Roche S, Fumagalli S, Courtneidge SA (1995) Requirement for Src family protein tyrosine kinases in G2 for fibroblast cell division. Science 269:1567–1569

    CAS  PubMed  Google Scholar 

  • Rodriguez-Fraticelli AE, Vergarajauregui S, Eastburn DJ, Datta A, Alonso MA, Mostov K, Martín-Belmonte F (2010) The Cdc42 GEF Intersectin 2 controls mitotic spindle orientation to form the lumen during epithelial morphogenesis. J Cell Biol 189:725–738

    CAS  PubMed  Google Scholar 

  • Roux W (1894) Einleitung zum Archiv für Entwickelungsmechanik. Arch Embryol 1:1–42

    Google Scholar 

  • Rubinfeld B, Crosier WJ, Albert I, Conroy L, Clark R, McCormick F, Polakis P (1992) Localization of the rap1GAP catalytic domain and sites of phosphorylation by mutational analysis. Mol Cell Biol 12:4634–4642

    CAS  PubMed Central  PubMed  Google Scholar 

  • Salbreux G (2008) Modélisation des instabilités du cortex d’actine. PhD thesis. Université Pierre et Marie Curie - Paris 6

    Google Scholar 

  • Salbreux G, Prost J, Joanny JF (2009) Hydrodynamics of cellular cortical flows and the formation of contractile rings. Phys Rev Lett 103:058102

    CAS  PubMed  Google Scholar 

  • Sanger JW, Sanger JM (1980) Surface and shape changes during cell division. Cell Tissue Res 209:177–186

    CAS  PubMed  Google Scholar 

  • Sausedo RA, Smith JL, Schoenwolf GC (1997) Role of nonrandomly oriented cell division in shaping and bending of the neural plate. J Comp Neurol 381:473–488

    CAS  PubMed  Google Scholar 

  • Sawai T (1979) Cyclic changes in the cortical layer of non-nucleated fragments of the newt’s egg. J Embryol Exp Morphol 51:183–193

    CAS  PubMed  Google Scholar 

  • Sawai T, Yoneda M (1974) Wave of stiffness propagating along the surface of the newt egg during cleavage. J Cell Biol 60:1–7

    CAS  PubMed  Google Scholar 

  • Schenk J, Wilsch-Bräuninger M, Calegari F, Huttner WB (2009) Myosin II is required for interkinetic nuclear migration of neural progenitors. Proc Natl Acad Sci USA 106:16487–16492

    CAS  PubMed  Google Scholar 

  • Schoenwolf GC, Alvarez IS (1989) Roles of neuroepithelial cell rearrangement and division in shaping of the avian neural plate. Development 106:427–439

    CAS  PubMed  Google Scholar 

  • Schroeder TE (1990) The contractile ring and furrowing in dividing cells. Ann N Y Acad Sci 582:78–87

    CAS  PubMed  Google Scholar 

  • Schuh M, Ellenberg J (2008) A new model for asymmetric spindle positioning in mouse oocytes. Curr Biol 18:1986–1992

    CAS  PubMed  Google Scholar 

  • Schwarz EC, Neuhaus EM, Kistler C, Henkel AW, Soldati T (2000) Dictyostelium myosin IK is involved in the maintenance of cortical tension and affects motility and phagocytosis. J Cell Sci 113:621–633

    CAS  PubMed  Google Scholar 

  • Schweitzer JK, Burke EE, Goodson HV, D'Souza-Schorey C (2005) Endocytosis resumes during late mitosis and is required for cytokinesis. J Biol Chem 280:41628–41635

    CAS  PubMed  Google Scholar 

  • Seasholtz TM, Majumdar M, Kaplan DD, Brown JH (1999) Rho and Rho kinase mediate thrombin-stimulated vascular smooth muscle cell DNA synthesis and migration. Circ Res 84:1186–1193

    CAS  PubMed  Google Scholar 

  • Sedzinski J, Biro M, Oswald A, Tinevez JY, Salbreux G, Paluch E (2011) Polar acto-myosin contractility destabilises the position of the cleavage furrow during cytokinesis. Nature (in press)

    Google Scholar 

  • Sells MA, Boyd JT, Chernoff J (1999) p21-activated kinase 1 (Pak1) regulates cell motility in mammalian fibroblasts. J Cell Biol 145:837–849

    CAS  PubMed  Google Scholar 

  • Selman GG, Waddington CH (1955) The mechanism of cell division in the cleavage of the newt’s egg. J Exp Biol 32:700–733

    Google Scholar 

  • Sheetz MP (2001) Cell control by membrane-cytoskeleton adhesion. Nat Rev Mol Cell Biol 2:392–396

    CAS  PubMed  Google Scholar 

  • Sheetz MP, Sable JE, Döbereiner H-G (2006) Continuous membrane-cytoskeleton adhesion requires continuous accommodation to lipid and cytoskeleton dynamics. Annu Rev Biophys Biomol Struct 35:417–434

    CAS  PubMed  Google Scholar 

  • Shuster CB, Burgess DR (2002) Targeted new membrane addition in the cleavage furrow is a late, separate event in cytokinesis. Proc Natl Acad Sci USA 99:3633–3638

    CAS  PubMed  Google Scholar 

  • Siegrist SE, Doe CQ (2006) Extrinsic cues orient the cell division axis in Drosophila embryonic neuroblasts. Development 133:529–536

    CAS  PubMed  Google Scholar 

  • Skop AR, Bergmann D, Mohler WA, White JG (2001) Completion of cytokinesis in C. elegans requires a brefeldin A-sensitive membrane accumulation at the cleavage furrow apex. Curr Biol 11:735–746

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smith LG (2001) Plant cell division: building walls in the right places. Nat Rev Mol Cell Biol 2:33–39

    CAS  PubMed  Google Scholar 

  • Solon J, Kaya A, Colombelli J, Brunner D (2009) Pulsed forces timed by a ratchet-like mechanism drive directed tissue movement during dorsal closure. Cell 137:1331–1342

    PubMed  Google Scholar 

  • Staple DB, Farhadifar R, Röper JC, Aigouy B, Eaton S, Jülicher F (2010) Mechanics and remodelling of cell packings in epithelia. Eur Phys J E 33:117–127

    CAS  PubMed  Google Scholar 

  • Steinman RM, Mellman IS, Muller WA, Cohn ZA (1983) Endocytosis and the recycling of plasma membrane. J Cell Biol 96:1–27

    CAS  PubMed  Google Scholar 

  • Stephens L, Hardin J, Keller R, Wilt F (1986) The effects of aphidicolin on morphogenesis and differentiation in the sea urchin embryo. Dev Biol 118:64–69

    CAS  PubMed  Google Scholar 

  • Stewart MP, Helenius J, Toyoda Y, Ramanathan SP, Muller DJ, Hyman AA (2011) Opposing activities of hydrostatic pressure and the actomyosin cortex drive mitotic cell rounding. Nature 469:226–230

    Google Scholar 

  • Strangeways T (1922) Observations on the changes seen in living cells during growth and division. Proc R Soc B 94:137–141

    Google Scholar 

  • Strauss B, Adams RJ, Papalopulu N (2006) A default mechanism of spindle orientation based on cell shape is sufficient to generate cell fate diversity in polarised Xenopus blastomeres. Development 133:3883–3893

    CAS  PubMed  Google Scholar 

  • Suzuki K, Takahashi K (2003) Reduced cell adhesion during mitosis by threonine phosphorylation of beta1 integrin. J Cell Physiol 197:297–305

    CAS  PubMed  Google Scholar 

  • Szczepanowska J, Korn ED, Brzeska H (2006) Activation of myosin in HeLa cells causes redistribution of focal adhesions and F-actin from cell center to cell periphery. Cell Motil Cytoskeleton 63:356–374

    CAS  PubMed  Google Scholar 

  • Thaw P, Baxter NJ, Hounslow AM, Price C, Waltho JP, Craven CJ (2001) Structure of TCTP reveals unexpected relationship with guanine nucleotide-free chaperones. Nat Struct Mol Biol 8:701–704

    CAS  Google Scholar 

  • Théry M, Bornens M (2006) Cell shape and cell division. Curr Opin Cell Biol 18:648–657

    PubMed  Google Scholar 

  • Théry M, Bornens M (2008) Get round and stiff for mitosis. HSFP J 2:65–71

    Google Scholar 

  • Théry M, Racine V, Pépin A, Piel M, Chen Y, Sibarita J-B, Bornens M (2005) The extracellular matrix guides the orientation of the cell division axis. Nat Cell Biol 7:947–953

    PubMed  Google Scholar 

  • Théry M, Jiménez-Dalmaroni A, Racine V, Bornens M, Jülicher F (2007) Experimental and theoretical study of mitotic spindle orientation. Nature 447:493–496

    PubMed  Google Scholar 

  • Thompson DAW (1917) On growth and form. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Thoumine O, Cardoso O, Meister JJ (1999) Changes in the mechanical properties of fibroblasts during spreading: a micromanipulation study. Euro Biophys J 28:222–234

    CAS  Google Scholar 

  • Tinevez JY, Schulze U, Salbreux G, Roensch J, Joanny JF, Paluch E (2009) Role of cortical tension in bleb growth. Proc Natl Acad Sci USA 106:18581–18586

    CAS  PubMed  Google Scholar 

  • Tsai MA, Waugh RE, Keng PC (1996) Cell cycle-dependence of HL-60 cell deformability. Biophys J 70:2023–2029

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tsai J-W, Lian W-N, Kemal S, Kriegstein AR, Vallee RB (2010) Kinesin 3 and cytoplasmic dynein mediate interkinetic nuclear migration in neural stem cells. Nat Neurosci 13:1463–1471

    Google Scholar 

  • Tsou M-FB, Ku W, Hayashi A, Rose LS (2003) PAR-dependent and geometry-dependent mechanisms of spindle positioning. J Cell Biol 160:845–855

    Google Scholar 

  • Tuomikoski T, Felix M-A, Dorée M, Gruenberg J (1989) Inhibition of endocytic vesicle fusion in vitro by the cell-cycle control protein kinase cdc2. Nature 342:942–945

    CAS  PubMed  Google Scholar 

  • Tzur A, Kafri R, LeBleu VS, Lahav G, Kirschner MW (2009) Cell growth and size homeostasis in proliferating animal cells. Science 325:167–171

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vadlamudi RK, Li F, Adam L, Nguyen D, Ohta Y, Stossel TP, Kumar R (2002) Filamin is essential in actin cytoskeletal assembly mediated by p21-activated kinase 1. Nat Cell Biol 4:681–690

    CAS  PubMed  Google Scholar 

  • Van Eyk JE, Arrell DK, Foster DB, Strauss JD, Heinonen TYK, Furmaniak-Kazmierczak E, Côté GP, Mak AS (1998) Different molecular mechanisms for Rho family GTPase-dependent, Ca2+-independent contraction of smooth muscle. J Biol Chem 273:23433–23439

    PubMed  Google Scholar 

  • Vogel SK, Raabe I, Dereli A, Maghelli N, Tolić-Nørrelykke IM (2007) Interphase microtubules determine the initial alignment of the mitotic spindle. Curr Biol 17:438–444

    CAS  PubMed  Google Scholar 

  • Walmod PS, Hartmann-Petersen R, Prag S, Lepekhin EL, Röpke C, Berezin V, Bock E (2004) Cell-cycle-dependent regulation of cell motility and determination of the role of Rac1. Exp Cell Res 295:407-420

    Google Scholar 

  • Wang SW, Hertzler PL, Clark WH Jr (2008) Mesendoderm cells induce oriented cell division and invagination in the marine shrimp Sicyonia ingentis. Dev Biol 320:175–184

    CAS  PubMed  Google Scholar 

  • Wang YL (2001) The mechanism of cytokinesis: reconsideration and reconciliation. Cell Struct Funct 26:633–638

    CAS  PubMed  Google Scholar 

  • Wang YL, Taylor DL (1979) Distribution of fluorescently labeled actin in living sea urchin eggs during early development. J Cell Biol 81:672–679

    CAS  PubMed  Google Scholar 

  • Warren G, Davoust J, Cockcroft A (1984) Recycling of transferrin receptors in A431 cells is inhibited during mitosis. EMBO J 3:2217–2225

    CAS  PubMed  Google Scholar 

  • Warren SL, Nelson WJ (1987) Nonmitogenic morphoregulatory action of pp 60(v-src) on multicellular epithelial structures. Mol Cell Biol 7:1326–1337

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wei Y, Mikawa T (2000) Formation of the avian primitive streak from spatially restricted blastoderm: evidence for polarized cell division in the elongating streak. Development 127:87–96

    CAS  PubMed  Google Scholar 

  • Werner M, Glotzer M (2008) Control of cortical contractility during cytokinesis. Biochem Soc Trans 36:371–377

    CAS  PubMed  Google Scholar 

  • White JG, Borisy GG (1983) On the mechanisms of cytokinesis in animal cells. J Theor Biol 101:289–316

    CAS  PubMed  Google Scholar 

  • Yamakita Y, Totsukawa G, Yamashiro S, Fry D, Zhang X, Hanks S, Matsumura F (1999) Dissociation of FAK/p130CAS/c-Src complex during mitosis: role of mitosis-specific serine phosphorylation of FAK. J Cell Biol 144:315–324

    CAS  PubMed  Google Scholar 

  • Yamashiro S, Matsumura F (1991) Mitosis-specific phosphorylation of caldesmon: possible molecular mechanism of cell rounding during mitosis. BioEssays 13:563–568

    CAS  PubMed  Google Scholar 

  • Yamashiro S, Yamakita Y, Ishikawa R, Matsumura F (1990) Mitosis-specific phosphorylation causes 83K non-muscle caldesmon to dissociate from microfilaments. Nature 344:675–678

    CAS  PubMed  Google Scholar 

  • Yamashiro S, Chern H, Yamakita Y, Matsumura F (2001) Mutant Caldesmon lacking cdc2 phosphorylation sites delays M-phase entry and inhibits cytokinesis. Mol Biol Cell 12:239–250

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang N, Higuchi O, Ohashi K, Nagata K, Wada A, Kangawa K, Nishida E, Mizuno K (1998) Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature 393:809–812

    CAS  PubMed  Google Scholar 

  • Yeung A, Evans E (1989) Cortical shell-liquid core model for passive flow of liquid-like spherical cells into micropipets. Biophys J 56:139–149

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zeng Q, Lagunoff D, Masaracchia R, Goeckeler Z, Côté G, Wysolmerski R (2000) Endothelial cell retraction is induced by PAK2 monophosphorylation of myosin II. J Cell Sci 113:471–482

    CAS  PubMed  Google Scholar 

  • Zhao Z, Rivkees SA (2003) Rho-associated kinases play an essential role in cardiac morphogenesis and cardiomyocyte proliferation. Dev Dyn 226:24–32

    CAS  PubMed  Google Scholar 

  • Zumdieck A, Kruse K, Bringmann H, Hyman AA, Jülicher F (2007) Stress generation and filament turnover during actin ring constriction. PLoS One 2:e696

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank B. Baum, J.S. Bois, S.W. Grill, C. Norden, and G. Salbreux for their comments on the manuscript, A. Rudnick for assistance with the illustrations, and The Polish Ministry for Science and Higher Education, the Max Planck Society, and the Human Frontier Science Program for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrew G. Clark or Ewa Paluch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Clark, A.G., Paluch, E. (2011). Mechanics and Regulation of Cell Shape During the Cell Cycle. In: Kubiak, J. (eds) Cell Cycle in Development. Results and Problems in Cell Differentiation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19065-0_3

Download citation

Publish with us

Policies and ethics