Skip to main content

An Overview of Membrane Computing

  • Conference paper
Distributed Computing and Internet Technology (ICDCIT 2011)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6536))

Abstract

Membrane Computing is a natural computing paradigm aiming to abstract computing models from the structure and functioning of the living cell as well as from the cooperation of cells in tissues, organs and other populations of cells. This direction of research was initiated by Gh. Păun in November 1998 [25]. In the last twelve years, the area has grown substantially: initial research focussed on understanding computability aspects using formal language theoretic elements, and using membrane computing as a parallel computing device capable of solving intractable problems; over the years, membrane computing has been found useful in modelling biological processes, simulating ecosystems, and also finds some applications in areas like economics, computer graphics and approximate optimization. Off late, complexity classes (time, space) of membrane systems and their connection with the classical complexity classes have been investigated. The connection of membrane computing with other areas like petri nets, brane calculi, process algebra, dynamical systems, X-machines and models based on fuzzy sets is an active and important recent line of research. In this paper, we give a high level overview of the research in membrane computing over the last 12 years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alhazov, A., Martin-Vide, C., Pan, L.: Solving a PSPACE-complete problem by recognizing P systems with restricted active membranes. Fundamenta Informaticae 58, 67–77 (2003)

    MathSciNet  MATH  Google Scholar 

  2. Arroyo, F., Baranda, A., Castellanos, J., Păun, G.: Membrane Computing: The power of (rule) creation. Journal of Universal Computer Science 8, 369–381 (2002)

    MATH  Google Scholar 

  3. Bernardini, F., Gheorghe, M.: Population P Systems. Journal of Universal Computer Science 10, 509–539 (2004)

    MathSciNet  Google Scholar 

  4. Besozzi, D., Cazzaniga, P., Pescini, D., Mauri, G., Colombo, S., Martegani, E.: Modeling and stochastic simulation of the Ras/cAMP/PKA pathway in the yeast sacharomyces cerevisiae evidences a key regulatory function for intracellular guanine nucleotides pools. Journal of BioTechnology 133, 377–385 (2008)

    Article  Google Scholar 

  5. Borodin, A.: On relating time and space to size and depth. SIAM Journal of Computing 6(4), 733–744 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brijder, R., Cavaliere, M., Riscos-Núñez, A., Rozenberg, G., Sburlan, D.: Membrane systems with marked membranes. Electronic Notes in Theoretical Computer Science 171, 25–36 (2007)

    Article  MATH  Google Scholar 

  7. Brijder, R., Cavaliere, M., Riscos-Núñez, A., Rozenberg, G., Sburlan, D.: Membrane systems with proteins embedded in membranes. Theoretical Computer Science 404, 26–39 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cardelli, L.: Brane calculi. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 257–278. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Freund, R., Păun, G., Pérez-Jiménez, M.J.: Tissue-like P systems with channel states. Theoretical Computer Science 330, 101–116 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Frisco, P., Hoogeboom, H.J., Sant, P.: A direct construction of a universal P system. Fundamenta Informaticae 49, 103–122 (2002)

    MathSciNet  MATH  Google Scholar 

  11. Head, T.: Formal language theory and DNA: an analysis of the generative capacity of specific recombinant behaviours. Bulletin of Mathematical Biology 49, 737–759 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ionescu, M., Păun, G., Yokomori, T.: Spiking neural P systems. Fundamenta Informaticae 71, 279–308 (2006)

    MathSciNet  MATH  Google Scholar 

  13. Kleijn, J., Koutny, M., Rozenberg, G.: Towards a petri net semantics for membrane systems. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp. 292–309. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Krishna, S.N.: The Power of Mobility: Four Membranes Suffice. In: Cooper, S.B., Löwe, B., Torenvliet, L. (eds.) CiE 2005. LNCS, vol. 3526, pp. 242–251. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  15. Krishna, S.N.: Membrane computing with transport and embedded proteins. Theoretical Computer Science 410(4-5), 355–375 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Krishna, S.N., Păun, G.: P systems with mobile membranes. Natural Computing 4, 255–274 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Krishna, S.N., Rama, R.: P systems with replicated rewriting. Journal of Automata, Languages and Combinatorics 6, 345–350 (2001)

    MathSciNet  MATH  Google Scholar 

  18. Manca, V., Bianco, L., Fontana, F.: Evolutions and oscillations of P systems: Applications to biological phenomena. In: Mauri, G., Păun, G., Jesús Pérez-Jímenez, M., Rozenberg, G., Salomaa, A. (eds.) WMC 2004. LNCS, vol. 3365, pp. 63–84. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  19. Martin-Vide, C., Păun, G., Pazos, J., Rodriguez-Paton, A.: Tissue P Systems. Theoretical Computer Science 296, 295–326 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Murphy, N.: Uniformity conditions for membrane systems: Uncovering complexity below P. Ph.D thesis, National University of Ireland, Maynooth (May 2010)

    Google Scholar 

  21. Păun, A., Pérez-Jiménez, M.J., Romero-Campero, F.J.: Modelling signal transduction using P systems. In: Hoogeboom, H.J., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2006. LNCS, vol. 4361, pp. 100–122. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  22. Păun, A., Popa, B.: P systems with proteins on membranes. Fundamenta Informaticae 72, 467–483 (2006)

    MathSciNet  MATH  Google Scholar 

  23. Păun, A., Păun, G.: The power of communication: P systems with symport/antiport. New Generation Computing 20, 295–305 (2002)

    Article  MATH  Google Scholar 

  24. Păun, G.: DNA Computing: distributed splicing systems. In: Mycielski, J., Rozenberg, G., Salomaa, A. (eds.) Structures in Logic and Computer Science. LNCS, vol. 1261, pp. 353–370. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  25. Păun, G.: Computing with membranes. Journal of Computer and System Sciences 61(1), 108–143 (2000); First circulated as TUCS Research Report No 208 (November 1998), http://www.tucs.fi

    Article  MathSciNet  MATH  Google Scholar 

  26. Păun, G.: P systems with active membranes: Attacking NP-complete problems. Journal of Automata, Languages and Combinatorics 6, 75–90 (2001)

    MathSciNet  MATH  Google Scholar 

  27. Pérez-Jiménez, M.J., Romero-Jiménez, A., Sancho-Caparrini, F.: Complexity classes in models of cellular computing with membranes. Natural Computing 2(3), 265–285 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pescini, D., Besozzi, D., Mauri, G., Zandron, C.: Dynamical probabilistic P systems. Intern. J. Found. Computer Sci. 17, 183–204 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Porreca, A.E., Mauri, G., Zandron, C.: Complexity classes for membrane systems. Informatique Theorique et Applications 40, 141–162 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Romero-Campero, F.J., Pérez-Jiménez, M.J.: Modelling gene expression control using P systems: the Lac Operon, a case study. BioSystems 91, 438–457 (2008)

    Article  Google Scholar 

  31. Romero-Campero, F.J., Pérez-Jiménez, M.J.: A model of the quorum-sensing system in Vibrio fischeri using P systems. Artificial Life 14, 1–15 (2008)

    Article  Google Scholar 

  32. Sosik, P.: The computational power of cell division. Natural Computing 2, 287–298 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ciobanu, G., Păun, G., Pérez-Jiménez, M.J. (eds.): Applications of Membrane Computing. Springer, Heidelberg (2005)

    Google Scholar 

  34. Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane Computing. Oxford University Press, Oxford (2010)

    MATH  Google Scholar 

  35. http://www.p-lingua.org/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Krishna, S.N. (2011). An Overview of Membrane Computing. In: Natarajan, R., Ojo, A. (eds) Distributed Computing and Internet Technology. ICDCIT 2011. Lecture Notes in Computer Science, vol 6536. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19056-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19056-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19055-1

  • Online ISBN: 978-3-642-19056-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics