Skip to main content

Finite Element Methods for Coupled Problems in Ferrohydrodynamics

  • Conference paper
Challenges in Scientific Computing - CISC 2002

Abstract

The interaction between a magnetisable fluid and an external magnetic field gives rise to several interesting phenomena in ferrohydrodynamics. Our mathematical models and solution strategies are mainly focused on cases in which the magnetic liquid exhibits a free surface which is not known a-priori. In particular, two special problems are taken into consideration: the behaviour of a ferrofluid drop in a rotary shaft seal and the generation of an ordered pattern of surface protuberances when the applied field exceeds a critical value.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Auernhammer, G. K., Brand, H. R.: Thermal convection in a rotating layer of a magnetic fluid. Eur. Phys. J. B 16 (2000) 157–168

    Article  Google Scholar 

  2. Bänsch, E., Höhn, B.: Numerical treatment of the Navier-Stokes equations with slip boundary condition. SIAM J. Sci. Comp. 20 (2000) 2144–2162

    Google Scholar 

  3. Berkovsky, B. M., Bashtovoy, V.: Magnetic Fluids and Applications Handbook. Begell house, Inc., New York, Wallingford (UK), 1996

    Google Scholar 

  4. Cowley, M. D., Rosensweig, R. E.: The interfacial stability of a ferromagnetic fluid. J. Fluid Mech. 30 (1967) 671–688

    Article  MATH  Google Scholar 

  5. Friedrichs, R., Engel, A.: Pattern and wavenumber selection in magnetic fluids. Phys. Rev. E 64 (2001) 021406

    Article  Google Scholar 

  6. Gailitis, A.: Formation of hexagonal pattern on the surface of a ferromagnetic fluid in an applied magnetic field. J. Fluid Mech. 82 (1977) 401–413

    Article  MATH  Google Scholar 

  7. Girault, V., Raviart, P.: Finite element methods for Navier-Stokes equations. Theory and algorithms Springer-Verlag, Berlin, 1986

    Book  MATH  Google Scholar 

  8. John, V., Knobloch, P., Matthies, G., Tobiska, L.: Non-nested multi-level solvers for finite element discretizations of mixed problems. Computing 68 (2002) 343–373

    Article  MathSciNet  Google Scholar 

  9. John, V., Matthies, G.: MooNMD - a program package based on mapped finite element methods. Technical Report 02–01, Fakultät für Mathematik, Otto-vonGuericke-Universität Magdeburg (2002)

    Google Scholar 

  10. Matthies, G.: Finite element methods for free boundary value problems with capillary surface. Shaker Verlag, Aachen, 2002, PhD thesis, Otto-von-GuerickeUniversität Magdeburg

    Google Scholar 

  11. Matthies, G., Tobiska, L.: Simulation of free surfaces of magnetic liquids. In: Algoritmy 2000, 15th Conf. Scientific Comput., ed. by Handlovicová, A., et. all, Slovak Technical University, Bratislava (2000) 1–10

    Google Scholar 

  12. Mitkova, T.: Lösbarkeit eines mathematischen Modells für Dichtungen mit magnetischen Flüssigkeiten. Technische Mechanik 20 (2000) 283–293

    Google Scholar 

  13. Odenbach, S.: Magnetoviscous effects in ferrofluids. Lect. Notes Physics, m71, 2002

    Google Scholar 

  14. Polevikov, V.: Stability of a static magnetic-fluid seal under the action of an external pressure drop. Fluid Dynamics 32 (1997) 457–461

    MATH  Google Scholar 

  15. Polevikov, V.: Numerical modelling of equilibrium capillary surfaces: some methods and results. Preprint 98–10, Fakultät für Mathematik, Otto-von-GuerickeUniversität Magdeburg (1998)

    Google Scholar 

  16. Polevikov, V.: Methods of numerical modeling of equilibrium capillary surfaces. Differents. Uravnenia 35 (1999) 975–981

    MathSciNet  Google Scholar 

  17. Polevikov, V., Tobiska, L.: Modeling of a dynamic magneto-fluid seal in the presence of a pressure drop. Fluid Dynamics 36 (2001) 890–898

    Article  MathSciNet  MATH  Google Scholar 

  18. Rosensweig, R. E.: Ferrohydrodynamics. Dover Publications, Inc. Mineola, New York, 1997

    Google Scholar 

  19. Saad, Y.: Iterative method for sparse linear systems. PWS Publishing Company, 1996

    Google Scholar 

  20. Vanka, S.: Block-implicit multigrid calculation of two-dimensional recirculating flows. Comp. Meth. Appl. Mech. Eng. 59 (1986) 29–48

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lavrova, O., Matthies, G., Mitkova, T., Polevikov, V., Tobiska, L. (2003). Finite Element Methods for Coupled Problems in Ferrohydrodynamics. In: Bänsch, E. (eds) Challenges in Scientific Computing - CISC 2002. Lecture Notes in Computational Science and Engineering, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19014-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19014-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62406-3

  • Online ISBN: 978-3-642-19014-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics