Skip to main content

An Evolutionary Approach to Synthetic Biology: Zen in the Art of Creating Life

  • Chapter
Advances in Evolutionary Computing

Part of the book series: Natural Computing Series ((NCS))

  • 832 Accesses

Abstract

Our concepts of biology, evolution, and complexity are constrained by having observed only a single instance of life, life on Earth. A truly comparative biology is needed to extend these concepts. Because we cannot observe life on other planets, we are left with the alternative of creating artificial life forms on Earth. I will discuss the approach of inoculating evolution by natural selection into the medium of the digital computer. This is not a physical/chemical medium, it is a logical/informational medium. Thus these new instances of evolution are not subject to the same physical laws as organic evolution (e.g., the laws of thermodynamics), and therefore exist in what amounts to another universe, governed by the“physical laws” of the logic of the computer. This exercise gives us a broader perspective on what evolution is and what it does.

An evolutionary approach to synthetic biology consists of inoculating the process of evolution by natural selection into an artificial medium. Evolution is then allowed to find the natural forms of living organisms in the artificial medium. These are not models of life, but independent instances of life. This essay is intended to communicate a way of thinking about synthetic biology that leads to a particular approach: to understand and respect the natural form of the artificial medium, to facilitate the process of evolution in generating forms that are adapted to the medium, and to let evolution find forms and processes that naturally exploit the possibilities inherent in the medium. Examples are cited of synthetic biology embedded in the computational medium, where in addition to being an exercise in experimental comparative evolutionary biology, it is also a possible means of harnessing the evolutionary process for the production of complex computer software.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adami, Chris. 1998. Introduction to Artificial Life. New York: Springer-Verlag. Pp. 374. Adami has used the input-output facilities of the new Tierra languages to feed data to creatures, and select for responses that result from simple computations, not contained in the seed genome. Contact: chris@almach.caltech.edu

    Book  MATH  Google Scholar 

  2. Anonymous. 1988. Worm invasion. Science 11-11-88: 885.

    Google Scholar 

  3. Barton-Davis, Paul. Unpublished. Independent implementation of the Tierra system, contact: pauld@cs.washington.edu

    Google Scholar 

  4. Beaudry, Amber A., and Gerald F. Joyce. 1992. Directed evolution of an RNA enzyme. Science 257: 635–641.

    Article  Google Scholar 

  5. Bell, Graham. 1982. The masterpiece of nature: the evolution and genetics of sexuality. Berkeley: University of California Press.

    Google Scholar 

  6. Benner, Steven A., Andrew D. Ellington, and Andreas Tauer. 1989. Modern metabolism as a palimpsest of the RNA world. Proceedings of the National Academy of Sciences U.S.A. 86: 7054–7058.

    Article  Google Scholar 

  7. Brooks, Rodney. Unpublished. Brooks has created his own Tierra-like system, which he calls SierrA. In his implementation, each machine instruction consists of an opcode and an operand. Successive instructions overlap, such that the operand of one instruction is interpreted as the opcode of the next instruction. Contact: brooks@ai.mit.edu

    Google Scholar 

  8. Burstyn, Harold L. 1990. RTM and the worm that ate internet. Harvard Magazine 92(5): 23–28.

    Google Scholar 

  9. Buss, Leo W. 1987. The evolution of individuality. Princeton, NJ: Princeton University Press. Pp. 203.

    Google Scholar 

  10. Cairn-Smith, A. G. 1985. Seven clues to the origin of life. Cambridge: Cambridge University Press.

    Google Scholar 

  11. Carroll, L. 1865. Through the Looking-Glass. London: Macmillan.

    Google Scholar 

  12. Chao, Lin, Christopher Vargas, Brian B. Spear, and Edward C. Cox. 1983. Transposable elements as mutator genes in evolution. Nature 303: 633–635.

    Article  Google Scholar 

  13. Charlesworth, B. 1976. Recombination modification in a fluctuating environment, Genetics 83: 181–195.

    MathSciNet  Google Scholar 

  14. Darwin, Charles. 1859. On the origin of species by means of natural selection or the preservation of favored races in the struggle for life. London: Murray.

    Google Scholar 

  15. Davidge, Robert. 1992. Processors as organisms. CSRP 250. School of Cognitive and Computing Sciences, University of Sussex. Presented at the ALife III Conference. Contact: robertd@cogs.susx.ac.uk

    Google Scholar 

  16. Davidge, Robert. 1993. Looping as a means to survival: playing Russian roulette in a harsh environment. In: Self organization and life: from simple rules to global complexity, Proceedings of the Second European Conference on Artificial Life. Contact: robertd@cogs.susx.ac.uk

    Google Scholar 

  17. Davidson, Eric H., and Roy J. Britten. 1979. Regulation of gene expression: Possible role of repetitive sequences. Science 204: 1052–1059.

    Article  Google Scholar 

  18. Dayhoff, Judith. 1990. Neural network architectures. New York: Van Nostrand Reinhold. Pp. 259.

    Google Scholar 

  19. DeAngelis, D., and L. Gross [eds.] 1992. Individual based models and approaches in ecology. New York: Chapman and Hall.

    Google Scholar 

  20. de Groot, Marc. Unpublished. Primordial soup, a Tierra-like system that has the additional ability to spawn self-reproducing organisms from a sterile soup. Contact: marc@kg6kf.ampr.org, marc@toad.com, marc@remarque.berkeley.edu

    Google Scholar 

  21. Doolittle, W. Ford, and Carmen Sapienz A. 1980. Selfish genes, the phenotype paradigm and genome evolution. Nature 284: 601–603.

    Article  Google Scholar 

  22. Eigen, Manfred. 1993. Viral quasispecies. Scientific American 269(1): 32–39. July.

    Article  Google Scholar 

  23. Farmer, J. D., and A. Belin. Artificial life: the coming evolution. Proceedings in celebration of Murray Gell-Mann’s 60th Birthday. Cambridge: Cambridge University Press. (Reprinted in Artificial Life II. Pp. 815-840.)

    Google Scholar 

  24. Feferman, Lind A. 1992. Simple rules… complex behavior [video]. Santa Fe, NM: Santa Fe Institute. Contact: fefie@ibm.net

    Google Scholar 

  25. Feng, Qing, Tae Kyo Park, and Julius Rebek. 1992. Crossover reactions between synthetic replicators yield active and inactive recombinants. Science 256: 1179–1180.

    Article  Google Scholar 

  26. Ghiselin, Michael. 1974. The economy of nature and the evolution of sex. Berkeley: University of California Press.

    Google Scholar 

  27. Goldberg, D. E. 1989. Genetic algorithms in search, optimization, and machine learning. Reading, MA: Addison-Wesley.

    MATH  Google Scholar 

  28. Gould, Steven J. 1989. Wonderful life. New York, W. W. Norton. Pp. 347.

    Google Scholar 

  29. Gray, James. Unpublished. Natural selection of computer programs. This may have been the first Tierra-like system, but evolving real programs on a real rather than a virtual machine, and predating Tierra itself: “I have attempted to develop ways to get computer programs to function like biological systems subject to natural selection.… I don't think my systems are models in the usual sense. The programs have really competed for resources, reproduced, run, and ‘died’. The resources consisted primarily of access to the CPU and partition space.… On a PDP11 I could have a population of programs running simultaneously.” Contact: Gray.James_L+@northport.vA.gov

    Google Scholar 

  30. Green, Melvin M. 1988. Mobile DNA elements and spontaneous gene mutation. In M. E. Lambert, J. F. McDonald, I. B. Weinstein [eds.]: Eukaryotic transposable elements as mutagenic agents. Pp. 41–50. Banbury Report 30, Cold Spring Harbor Laboratory.

    Google Scholar 

  31. Halvorson, Herlyn O., and Albert Monroy. 1985. The origin and evolution of sex. New York: A. R. Liss.

    Google Scholar 

  32. Hapgood, Fred. 1979. Why males exist: an inquiry into the evolution of sex. New York: William Morrow.

    Google Scholar 

  33. Hertz, John, Anders Krogh, and Richard G. Palmer. 1991. Introduction to the theory of neural computation. Reading, MA: Addison-Wesley. Pp. 327.

    Google Scholar 

  34. Hogeweg, P. 1989. Mirror beyond mirror: puddles of life. In: Langton, C. [ed.]; Artificial Life, Santa Fe Institute Studies in the Sciences of Complexity, vol. VI, 297–316. Redwood City, CA: Addison-Wesley.

    Google Scholar 

  35. Holland, John Henry. 1975. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. Ann Arbor, University of Michigan Press.

    Google Scholar 

  36. Hong, J. I., Q. Feng, V. Rotello, and J. Rebek. 1992. Competition, cooperation, and mutation: Iimproving a synthetic replicator by light irradiation. Science 255: 848–850.

    Article  Google Scholar 

  37. Huston, Michael. 1979. A general hypothesis of species diversity. American Naturalist 113:81–101.

    Article  MathSciNet  Google Scholar 

  38. Huston, Michael. 1992. Biological diversity and human resources. Impact of Science on Society 166: 121–130.

    Google Scholar 

  39. Huston, Michael. 1993. Biological diversity: the coexistence of species on changing landscapes. Cambridge: Cambridge University Press.

    Google Scholar 

  40. Huston, M., D. DeAngelis, and W. Post. 1988. New computer models unify ecological theory. Bioscience 38(10): 682–691.

    Article  Google Scholar 

  41. Jelinek, Warren R., and Carl W. Schmid. 1982. Repetitive sequences in eukaryotic DNA and their expression. Annual Reviews of Biochemistry 51:813–844.

    Article  Google Scholar 

  42. Joyce, Gerald F. 1992. Directed molecular evolution. Scientific American, December: 90–97.

    Google Scholar 

  43. Kampis, George. 1993. Coevolution in the computer: The necessity and use of distributed code systems. Printed in the ECAL93 proceedings, Brussels. Contact: gk@cfhext.physchem.chemie.uni-tuebingen.de

    Google Scholar 

  44. Kampis, George. 1993. Life-like computing beyond the machine metaphor. In: R. Paton [ed.]: Computing with biological metaphors. London: Chapman and Hall. Contact: gk@cfnext.physchem.chemie.uni-tuebingen.de

    Google Scholar 

  45. Kauffman, Stuart A. 1993. The origins of order, self-organization and selection in evolution. Oxford: Oxford University Press. Pp. 709.

    Google Scholar 

  46. Kerem, Bat-sheva, Johanna M. Rommens, Janet A. Buchanan, Danuta Markiewicz, Tara K. Cox, Aravinda Chakravarti, Manuel Buchwald, and Lap-Chee Tsui. 1989. Identification of the cystic fibrosis gene: Genetic analysis. Science 245: 1073–1080.

    Article  Google Scholar 

  47. Koza, John R. 1992. Genetic programming, on the programming of computers by means of natural selection. Cambridge, MA: MIT Press.

    MATH  Google Scholar 

  48. Langton, C. G. 1986. Studying artificial life with cellular automat A. Physica 22D: 120–149.

    MathSciNet  Google Scholar 

  49. Levy, Steven. 1992. Artificial Life, the quest for a new creation. Pantheon Books, New York. Pp. 390.

    Google Scholar 

  50. Levy, Steven. 1992. A-Life Nightmare. Whole Earth Review #76, Fall: 22.

    Google Scholar 

  51. Litherland, J. 1993. Open-ended evolution in a computerised ecosystem. A Masters of Science dissertation in the Department of Computer Science, Brunei University. Contact: david.martland@brunel.ac.uk

    Google Scholar 

  52. MacArthur, Robert H., and Edward O. Wilson. 1967. The theory of island biogeography. Princeton, NJ: Princeton University Press. Pp. 203.

    Google Scholar 

  53. Maley, Carlo C. 1993. A model of early evolution in two dimensions. Masters of Science thesis, Department of Zoology, New College, Oxford University. Contact: cmaley@oxford.ac.uk

    Google Scholar 

  54. Manousek, Wolfgang. 1992. Spontane Komplexitaetsentstehung — TIERRA, ein Simulator fuer biologische Evolotion. Diplomarbeit, Universitaet Bonn, Germany, Oktober 1992. Contact: Kurt Stueber, stueber@vax.mpiz-koeln.mpg.d400.de

    Google Scholar 

  55. Margulis, Lynn, and Dorion Sagan. 1986. Origin of sex. New Haven, CT: Yale University Press.

    Google Scholar 

  56. Marx, Jean L. 1989. The cystic fibrosis gene is found. Science 245: 923–925.

    Article  Google Scholar 

  57. Maynard Smith, J. 1971. What use is sex? Journal of Theoretical Biology 30: 319–335.

    Article  Google Scholar 

  58. Maynard Smith, J. 1992. Byte-sized evolution. Nature 355: 772–773.

    Article  Google Scholar 

  59. Maynard Smith, J, Christopher G. Dowson, and Brian G. Spratt. 1991. Localized sex in bacteria. Nature 349: 29–31.

    Article  Google Scholar 

  60. Mead, Carver. 1993. Analog VLSI and neural systems. Reading, MA: Addison-Wesley. Pp.371.

    Google Scholar 

  61. Michod, Richard E., and Bruce R. Levin. 1988. The evolution of sex: An examination of current ideas. Sunderland, MA: Sinauer Associates.

    Google Scholar 

  62. Moravec, Hans. 1988. Mind Children: the future of robot and human intelligence. Cambridge, MA: Harvard University Press.

    Google Scholar 

  63. Moravec, Hans. 1989. Human culture: A genetic takeover underway. In: Langton, C. [ed.]: Artificial Life, Santa Fe Institute Studies in the Sciences of Complexity, vol. VI, 167–199. Redwood City, CA: Addison-Wesley.

    Google Scholar 

  64. Moravec, Hans. 1993. Pigs in cyberspace. Extropy #10, Winter/Spring.

    Google Scholar 

  65. Morris, S. Conway. 1989. Burgess shale faunas and the Cambrian explosion. Science 246: 339–346.

    Article  Google Scholar 

  66. Nowick, J., Q. Feng, T. Tijivikua, P. Ballester, and J. Rebek. 1991. Journal of the American Chemical Society 113: 8831–8839.

    Article  Google Scholar 

  67. Orgel, L.E., and F. H. C. Crick. 1980. Selfish DNA: The ultimate parasite. Nature 284: 604–607.

    Article  Google Scholar 

  68. Rasmussen, Steen, Carsten Knudsen, Rasmus Feldberg, and Morten Hindsholm. 1990. The coreworld: Emergence and evolution of cooperative structures in a computational chemistry. Physica D 42: 111–134.

    Article  Google Scholar 

  69. Rasmussen, S., C. Knudsen, and R. Feldberg. 1991. Dynamics of programmable matter. In: Langton, C., C. Taylor, J. D. Farmer, and S. Rasmussen [eds.]: Artificial Life II, Santa Fe Institute Studies in the Sciences of Complexity, vol. X, 211–254. Redwood City, CA: Addison-Wesley.

    Google Scholar 

  70. Ray, T. S. 1979. Slow-motion world of plant ‘behavior’ visible in rainforest. Smithsonian 9(12): 121–30.

    Google Scholar 

  71. Ray, T. S. 1991. An approach to the synthesis of life. In: Langton, C., C. Taylor, J. D. Farmer, and S. Rasmussen [eds.: Artificial Life II, Santa Fe Institute Studies in the Sciences of Complexity, vol. X, 371–408. Redwood City, CA: Addison-Wesley.

    Google Scholar 

  72. Ray, T. S. 1991. Population dynamics of digital organisms. In: Langton, C.G. [ed.]: Artificial Life II Video Proceedings. Redwood City, CA: Addison Wesley.

    Google Scholar 

  73. Ray, T. S. 1991. Is it alive, or is it GA? In: ai]Belew, R. K., and L. B. Booker [eds.], Proceedings of the 1991 International Conference on Genetic Algorithms, 527–534. San Mateo, CA: Morgan Kaufmann.

    Google Scholar 

  74. Ray, T. S. 1991. Evolution and optimization of digital organisms. In: Billingsley K.R., E. Derohanes, and H. Brown, III [eds.]: Scientific Excellence in Supercomputing: The IBM 1990 Contest Prize Papers, Athens, GA: The Baldwin Press, The University of Georgia.

    Google Scholar 

  75. Ray, T. S. 1992. Foraging behaviour in tropical herbaceous climbers (Araceae). Journal of Ecology. 80: 189–203.

    Article  Google Scholar 

  76. Ray, T. S. 1992. Tierra.doc. Documentation for the Tierra Simulator V4.0, 9-9-92. Newark, DE: Virtual Life. The full source code and documentation for the Tierra program is available by anonymous ftp at: tierrA.slhs.udel.edu [128.175.41.34] and life.slhs.udel.edu [128.175.41.33], or by contacting the author.

    Google Scholar 

  77. Ray, T. S. 1994. Evolution and complexity. In: Cowan, George A., David Pines, and David Metzger [eds.]: Complexity: Metaphors, Models, and Reality, Pp. 161–173. Reading, MA: Addison-Wesley.

    Google Scholar 

  78. Ray, T. S. 1994. Evolution, complexity, entropy, and artificial reality. Physica D 75: 239–263.

    Article  MATH  Google Scholar 

  79. Riordan, John R., Johanna M. Rommens, Bat-sheva Kerem, Noa Alon, Richard Rozmahel, Zbyszko Grzelczak, Julian Zielenski, Si Lok, Natasa Plavsic, Jia-Ling Chou, Mitchell L. Drumm, Michael C. Lannuzzi, Francis S Collins, and Lap-Chee Tsui. 1989. Identification of the cystic fibrosis gene: Cloning and characterization of complementary DNA. Science 245: 1066–1073.

    Article  Google Scholar 

  80. Rommens, Johanna M., Michael C. lannuzzi, Bat-sheva Kerem, Mitchell L. Drumm, Georg Melmer, Michhael Dean, Richard Rozmahel, Jeffery L. Cole, Dara Kennedy, Noriko Hidaka, Martha Zsiga, Manuel Buchwald, John R. Riordan, Lap-Chee Tsui, and Francis S. Collins. 1989. Identification of the cystic fibrosis gene: Chromosome walking and jumping. Science 245: 1059–1065.

    Article  Google Scholar 

  81. Skipper, Jakob. 1992. The computer zoo — evolution in a box. In: Francisco J. Varela and Paul Bourgine [eds.]: Toward a practice of autonomous systems, proceedings of the First European Conference on Artificial Life. Cambridge, MA: MIT Press. Pp. 355–364. Contact: Jakob.Skipper@copenhagen.ncr.com

    Google Scholar 

  82. Sober, E. 1984. The nature of selection. Cambridge, MA: MIT Press.

    Google Scholar 

  83. Spafford, Eugene H. 1989. The internet worm program: An analysis. Computer Communication Review 19(1): 17–57. Also issued as Purdue CS technical report TR-CSD-823. Contact: spaf@purdue.edu

    Article  Google Scholar 

  84. Spafford, Eugene H. 1989. The internet worm: crisis and aftermath. Communications of the ACM 32(6): 678–687. Contact: spaf@purdue.edu

    Article  Google Scholar 

  85. Stanley, Steven M. 1973. An ecological theory for the sudden origin of multicellular life in the late Precambrian, Proceedings of the National Academy of Sciences U.S.A. 70: 1486–1489.

    Article  Google Scholar 

  86. Stearns, Steven C. 1987. The evolution of sex and its consequences. Boston: Birkhäuser Verlag.

    Google Scholar 

  87. Strickberger, Monroe W. 1985. Genetics. New York: Macmillan.

    Google Scholar 

  88. Strong, D.R. and T. S. Ray. 1975. Host tree location behavior of a tropical vine (Monstern gigantea) by skototropism. Science, 190: 804–06.

    Article  Google Scholar 

  89. Surkan, Al. Unpublished. Self-balancing of dynamic population sectors that consume energy. Department of Computer Science, UNL. “Tierra-like systems are being explored for their potential applications in solving the problem of predicting the dynamics of consumption of a single energy carrying natural resource.” Contact: surkan@cse.unl.edu

    Google Scholar 

  90. Syvanen, Michael. 1984. The evolutionary implications of mobile genetic elements. Annual Review of Genetics 18: 271–293.

    Article  Google Scholar 

  91. Tackett, Walter, and Jean-Luc Gaudiot. 1993. Adaptation of self-replicating digital organisms. Proceedings of the International Joint Conference on Neural Networks, Nov. 1993, Beijing, China. Piscataway, NJ: IEEE Press. Contact: tackett@ipld01.hac.com, tackett@priam.usc.edu

    Google Scholar 

  92. Taylor, Charles E., David R. Jefferson, Scott R. Turner, and Seth R. Goldman. 1989. RAM: Artificial life for the exploration of complex biological systems. In: Langton, C. [ed.: Artificial Life, Santa Fe Institute Studies in the Sciences of Complexity, vol. VI, 275–295. Redwood City, CA: Addison-Wesley.

    Google Scholar 

  93. Thomas, C. A. 1971. The genetic organization of chromosomes. Annual Review of Genetics 5: 237–256.

    Article  Google Scholar 

  94. Todd, Peter M. 1993. Artificial death. Proceedings of the Second European Conference on Artificial Life (ECAL93), vol. 2, Pp. 1048–1059. Brussels, Belgium: Universite Libre de Bruxelles. Contact: ptodd@spo.rowland.org

    Google Scholar 

  95. Van Valen, L. 1973. A new evolutionary law. Evolutionary Theory 1: 1–30.

    Google Scholar 

  96. Williams, George C. 1975. Sex and evolution. Princeton, NJ: Princeton University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ray, T.S. (2003). An Evolutionary Approach to Synthetic Biology: Zen in the Art of Creating Life. In: Ghosh, A., Tsutsui, S. (eds) Advances in Evolutionary Computing. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18965-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18965-4_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62386-8

  • Online ISBN: 978-3-642-18965-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics