Skip to main content

Concepts in High Temperature Superconductivity

  • Chapter
The Physics of Superconductors

Abstract

It is the purpose of our study to explore the theory of high temperature superconductivity. Much of the motivation for this comes from the study of cuprate high temperature superconductors. However, we do not focus in great detail on the remarkable and exciting physics that has been discovered in these materials. Rather, we focus on the core theoretical issues associated with the mechanism of high temperature superconductivity. Although our discussions of theoretical issues in a strongly correlated superconductor are intended to be self contained and pedagogically complete, our discussions of experiments in the cuprates are, unfortunately, considerably more truncated and impressionistic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.R. Schrieffer, Theory of Superconductivity, Frontiers in Physics (Addison-Wesley) (1988).

    Google Scholar 

  2. J.G. Bednorz and K.A. Muller, “Possible high T c superconductivity in the Ba-La-Cu-O system,” Z. Phys. B, 64, 189–193 (1986).

    Article  ADS  Google Scholar 

  3. V.J. Emery and S.A. Kivelson, “Superconductivity in bad metals,” Phys. Rev. Lett., 74, 3253–3256 (1995).

    Article  ADS  Google Scholar 

  4. P.W. Anderson, “Experimental constraints on the theory of high-Tc super-conductivity,” Science, 256, 1526–1531 (1992).

    Article  ADS  Google Scholar 

  5. P.W. Anderson, “The resonating valence bond state in La2CuO4 and super-conductivity,” Science, 235, 1169–1198 (1987).

    Article  Google Scholar 

  6. V.J. Emery, S.A. Kivelson, and J.M. Tranquada, “Stripe phases in high-temperature superconductors,” Proc. Natl. Acad. Sci., 96, 8814–8817 (1999).

    Article  ADS  Google Scholar 

  7. P.A. Lee, “Pseudogaps in underdoped cuprates,” Physica C, 317–318, 194–204 (1999).

    Article  Google Scholar 

  8. L. Taillefer, B. Lussier, R. Gagnon, K. Behnia, and H. Aubin, “Universal heat conduction in YBa2Cu306.9,” Phys. Rev. Lett, 79, 483–486 (1997).

    Article  ADS  Google Scholar 

  9. P.J. Turner, R. Harris, S. Kamal, M.E. Hayden, D.M. Broun, D.C. Morgan, A. HosScini, P. Dosanjh, J.S. Preston, R. Liang, D.A. Bonn, and W.N. Hardy, “Broadband microwave spectroscopy of d-wave quasiparticles in oxygen-ordered YBa2Cu3O6.50,” cond-mat/0111353, submitted to PRL (2002).

    Google Scholar 

  10. K.A. Moller, D.J. Baar, J.S. Urbach, R. Liang, W.N. Hardy, and A. Kapitulnik, “Magnetic field dependence of the density of states of YBa2Cu3O6.95 as determined from the specific heat,” Phys. Rev. Lett., 73, 2744–2747 (1994).

    Article  ADS  Google Scholar 

  11. B. Revaz, J.-Y. Genoud, J.K. Neumaier, A. Erb, and E. Walker, “d-wave scaling relations in the mixed-state specific heat of YBa2Cu3O7,” Phys. Rev. Lett., 80, 3364–3368 (1998).

    Article  ADS  Google Scholar 

  12. D.H. Lu, D.L. Feng, N.P. Armitage, K. M. Shen, A. Damascelli, C. Kim, F. Ronning, Z.X. Shen, D.A. Bonn, R. Liang, W.N. Hardy, A.I. Rykov, and S. Tajima, “Superconducting gap and strong in-plane anisotropy in untwinned YBa2Cu3O7−δ ,” Phys. Rev. Lett, 86, 4370–4373 (2001).

    Article  ADS  Google Scholar 

  13. D. Basov, R. Liang, D.A. Bonn, W.N. Hardy, B. Dabrowski, D.B.T.M. Quijada, J.P. Rice, D.M. Ginsberg, and T. Timusk, “In-plane anisotropy of the penetration depth in YBa2Cus3O7−x and YBa2Cu4O8,” Phys. Rev. Lett, 74, 598–601 (1995).

    Article  ADS  Google Scholar 

  14. S. Chakravarty and S. Kivelson, “Electronic mechanism of superconductivity in the cuprates, C60, and polyacenes,” Phys. Rev. B, 64, 064511–064519 (2001).

    Article  ADS  Google Scholar 

  15. V.J. Emery and S.A. Kivelson, “Frustrated electronic phase separation and high-temperature superconductors,” Physica C, 209, 597–621 (1993).

    Article  ADS  Google Scholar 

  16. S. Caprara, C. Castellani, C. Di Castro, and M. Grilli, “Phase separation and superconductivity in strongly interacting electron systems,” Physica C, 235–240, 2155–2156 (1994).

    Article  Google Scholar 

  17. A. Moreo, S. Yunoki, and E. Dagotto, “Phase separation scenario for manganese oxides and related materials,” Science, 283, 2034–2040 (1999).

    Article  Google Scholar 

  18. P.W. Anderson, “A re-examination of concepts in magnetic metals: the ‘nearly antiferromagnetic Fermi liquid’,” Adv. Phys., 46, 3–11 (1997).

    Article  ADS  Google Scholar 

  19. J.E. Hirsch, “Antiferromagnetism, localization, and pairing in a two-dimensional model for CuO2,” Phys. Rev. Lett, 59, 228–231 (1987).

    Article  ADS  Google Scholar 

  20. V.J. Emery, S.A. Kivelson, and O. Zachar, “Spin-gap proximity effect mechanism of high-temperature superconductivity,” Phys. Rev. B, 56, 6120–6147 (1997).

    Article  ADS  Google Scholar 

  21. S. Chakravarty, A. Sudbo, P.W. Anderson, and S. Strong, “Interlayer tunneling and gap anisotropy in high-temperature superconductors,” Science, 261, 337–340 (1993).

    Article  ADS  Google Scholar 

  22. E. Demler and S.-C. Zhang, “Quantitative test of a microscopic mechanism of high-temperature superconductivity,” Nature, 396, 733–737 (1998).

    Article  ADS  Google Scholar 

  23. A.H. Castro Neto and F. Guinea, “Superconductivity, Josephson coupling, and order parameter symmetry in striped cuprates,” Phys. Rev. Lett, 80, 4040–4043 (1998).

    Article  ADS  Google Scholar 

  24. J.E. Hirsch, “The true colors of cuprates,” Science, 295, 2226–2227 (2002).

    Article  Google Scholar 

  25. V.J. Emery, S.A. Kivelson, and O. Zachar, “Classification and stability of phases of the multicomponent one-dimensional electron gas,” Phys. Rev. B, 59, 15641–15653 (1999).

    Article  ADS  Google Scholar 

  26. D.J. Scalapino, “The 2-leg Hubbard ladder: Computational studies of new materials,” cond-mat/0109125 (2001).

    Google Scholar 

  27. H.J.A. Molegraaf, C. Presura, D. van der Marel, P.H. Kes, and M. Li, “Superconductivity-induced transfer of in-plane spectral weight in Bi2Sr2CaCu2O8+δ ,” Science, 295, 2239–2241 (2002).

    Article  ADS  Google Scholar 

  28. A.F. Santander-Syro, R.P.S.M. Lobo, N. Bontemps, Z. Konstantinovic, Z.Z. Li, and H. Raffy, “Pairing in cuprates from high energy electronic states,” cond-mat/0111539 (2001).

    Google Scholar 

  29. P. Monthoux, A.V. Balatsky, and D. Pines, “Toward a theory of high-temperature superconductivity in the antiferromagnetically correlated cuprate oxides,” Phys. Rev. Lett, 67, 3448–3451 (1991).

    Article  ADS  Google Scholar 

  30. N. Bulut and D.J. Scalapino, “d(x2y 2) symmetry and the pairing mechanism,” Phys. Rev. B, 54, 14971–14973 (1996).

    Article  ADS  Google Scholar 

  31. D.J. Scalapino, “Superconductivity and spin fluctuations,” J. Low Temp. Phys., 117, 179–188 (1999), international Conference on Physics and Chemistry of Molecular and Oxide Superconductors. MOS’99, Stockholm, Sweden, 28 July–2 Aug. 1999. Kluwer Academic/Plenum Publishers.

    Article  Google Scholar 

  32. R.J. Radtke, S. Ullah, K. Levin, and N.R. Norman, “Constraints on superconducting transition temperatures in the cuprates: antiferromagnetic spin fluctuations,” Phys. Rev. B, 46, 11975–11985 (1992).

    Article  ADS  Google Scholar 

  33. CM. Varma, J. Zaanen, and K. Raghavachari, “Superconductivity in the fullerenes,” Science, 254, 989–992 (1991).

    Article  ADS  Google Scholar 

  34. M. Schlüter, M. Lannoo, M. Needels, G.A. Baraff, and D. Tomanek, “Electronphonon coupling and superconductivity in alkali-intercalated C60 solid,” Phys. Rev. Lett., 68, 526–529 (1992).

    Article  ADS  Google Scholar 

  35. P. Morel and P.W. Anderson, “Calculation of the superconducting state parameters with retarded electron-phonon interaction,” Physical Review, 125, 1263–1271 (1962).

    Article  ADS  Google Scholar 

  36. J.R. Schrieffer, D.J. Scalapino, and J.W. Wilkins, “Effective tunneling density of states in superconductors,” Phys. Rev. Lett., 10 (1963).

    Google Scholar 

  37. S. Chakravarty, S. Khlebnikov, and S. Kivelson, “Comment on “Electronphonon coupling and superconductivity in alkali-intercalated C60 solid”,” Phys. Rev. Lett., 69, 212 (1992).

    Article  ADS  Google Scholar 

  38. R. Shankar, “Renormalization-group approach to interacting fermions,” Rev. Mod. Phys., 66, 129–192 (1994).

    Article  MathSciNet  ADS  Google Scholar 

  39. J. Polchinski, “Renormalization and effective lagrangians,” Nucl. Phys. B, 231, 269–295 (1984).

    Article  ADS  Google Scholar 

  40. Z.-X. Shen, D.S. Dessau, B.O. Wells, D.M. King, W.E. Spicer, A.J. Arko, D. Marshal, L.W. Lombardo, A. Kapitulnik, P. Dickinson, S. Doniach, J. Di-Carlo, A.G. Losser, and C.H. Park, “Anomalously large gap anisotropy in the a–b plane of bi2212,” Phys. Rev. Lett, 70, 1553–1556 (1993).

    Article  ADS  Google Scholar 

  41. R. Micnas, J. Ranninger, and S. Robaszkiewicz, “Superconductivity in narrow-band systems with local nonretarded attractive interactions,” Rev. Mod. Phys., 62, 113–234 (1990).

    Article  ADS  Google Scholar 

  42. T. Holstein, “Studies of polaron motion: I,” Annals of Physics., 8, 325–342 (1959).

    Article  ADS  MATH  Google Scholar 

  43. G. Gruner, Density waves in solids (Perseus Books Group) (2000).

    Google Scholar 

  44. G. Bilbro and W.L. McMillan, “Theoretical model of superconductivity and the martensitic transformation in A15 compounds,” Phys. Rev. B, 14, 1887–1892 (1976).

    Article  ADS  Google Scholar 

  45. O. Zachar, S.A. Kivelson, and V.J. Emery, “Landau theory of stripe phases in cuprates and nickelates,” Phys. Rev. B, 57, 1422–1426 (1998).

    Article  ADS  Google Scholar 

  46. J.M. Tranquada, “Phase separation, charge segregation and superconductivity in layered cuprates,” Neutron Scattering in Layered Copper-Oxide Superconductors, A. Furrer, Editor, 83, 225–260 (1998), kluwer, Dordrecht, The Netherlands.

    Chapter  Google Scholar 

  47. J.M. Tranquada, “Experimental evidence for topological doping in the cuprates,” AIP-Conference-Proceedings, 483, 336–340 (1999).

    Article  ADS  Google Scholar 

  48. J. Zaanen, “High-temperature superconductivity: stripes defeat the Fermi liquid,” Nature, 404, 714 (2000).

    Article  Google Scholar 

  49. S. Sachdev, “Quantum criticality: competing ground states in low dimensions,” Science, 288, 475–480 (2000).

    Article  ADS  Google Scholar 

  50. J. Orenstein and A.J. Millis, “Advances in the physics of high-temperature superconductivity,” Science, 288, 468–474 (2000).

    Article  ADS  Google Scholar 

  51. G. Baskaran, “Competition between superconductivity and charge stripe order in high-Tc cuprates,” Mod. Phys. Lett. B, 14, 377–384 (2000).

    Article  ADS  Google Scholar 

  52. S.A. Kivelson, E. Pradkin, and V.J. Emery, “Electronic liquid-crystal phases of a doped Mott insulator,” Nature, 393, 550–553 (1998).

    Article  ADS  Google Scholar 

  53. C.M. Varma, “Non Fermi-liquid states and pairing of a general model of copper-oxide metals,” Phys. Rev. B, 55, 14554–14580 (1997).

    Article  ADS  Google Scholar 

  54. S. Chakravarty, R.B. Laughlin, D.K. Morr, and C. Nayak, “Hidden order in the cuprates,” Phys. Rev. B, 63, 094503–094510 (2001).

    Article  ADS  Google Scholar 

  55. I. Affleck and J.B. Marston, “Large-n limit of the Heisenberg-Hubbard model: Implications for high-T c superconductors,” Phys. Rev. B, 37, 3774–3777 (1988).

    Article  ADS  Google Scholar 

  56. G. Kotliar, “Resonating valence bonds and d-wave superconductivity,” Phys. Rev. B, 37, 3664–3666 (1998).

    Article  ADS  Google Scholar 

  57. D.A. Ivanov, P.A. Lee, and X.-G. Wen, “Staggered-vorticity correlations in a lightly doped t-J model: A variational approach,” Phys. Rev. Lett, 34, 3958–3961 (2000).

    Article  ADS  Google Scholar 

  58. Q.H. Wang, J.H. Han, and D.H. Lee, “Staggered currents in the mixed state,” Phys. Rev. Lett, 87, 7004–7007 (2001).

    Google Scholar 

  59. T. Senthil and M.RA. Fisher, “Fractionalization in the cuprates: Detecting the topological order,” Phys. Rev. Lett, 86, 292–295 (2000).

    Article  ADS  Google Scholar 

  60. S.A. Kivelson, G. Aeppli, and V.J. Emery, “Thermodynamics of the interplay between magnetism and high-temperature superconductivity,” Proc. Nat Acad. Sci., 98, 11903–11907 (2001).

    Article  ADS  MATH  Google Scholar 

  61. C. Castellani, C. Di Castro, and M. Grilli, “Singular quasiparticle scattering in the proximity of charge instabilities,” Phys. Rev. Lett, 75, 4650–4653 (1995).

    Article  ADS  Google Scholar 

  62. S. Andergassen, S. Caprara, C. Di Castro, and M. Grilli, “Anomalous isotopic effect near the charge-ordering quantum criticality,” Phys. Rev. Lett, 87, 56401–56403 (2001).

    Article  ADS  Google Scholar 

  63. A.V. Chubukov, S. Sachdev, and J. Ye, “Theory of two-dimensional quantum Heisenberg antiferromagnets with a nearly critical ground state,” Phys. Rev. B, 49, 11919–11961 (1994).

    Article  ADS  Google Scholar 

  64. N.D. Mathur, F.M. Grosche, S.R. Julian, I.R. Walker, D.M. Freye, R.K.W. Haselwimmer, and G.G. Lonzarich, “Magnetically mediated superconductivity in heavy fermion compounds,” Nature, 394, 39–43 (1998).

    Article  ADS  Google Scholar 

  65. S.A. Grigera, R.S. Perry, A.J. Schofield, M. Chiao, S.R. Julian, G.G. Lonzarich, S.I. Ikeda, Y. Maeno, A.J. Millis, and A.P. Mackenzie, “Magnetic fieldtuned quantum criticality in the metallic ruthenate Sr3Ru2O7,” Science, 294, 329–332 (2001).

    Article  ADS  Google Scholar 

  66. J.R. Schrieffer, “Ward’s identity and the suppression of spin fluctuation superconductivity,” J. Low Temp. Phys., 99, 397–402 (1995).

    Article  ADS  Google Scholar 

  67. R.B. Laughlin, “A critique of two metals,” Adv. Phys., 47, 943–958 (1998).

    Article  ADS  Google Scholar 

  68. G. Baskaran, Z. Zou, and R.B. Laughlin, “The resonating valence bond state and high-T c superconductivity — a mean field theory,” Solid State Comm., 63, 973–976 (1987).

    Article  ADS  Google Scholar 

  69. S.A. Kivelson, D.S. Rokhsar, and J.P. Sethna, “Topology of the resonating valence-bond state: Solitons and high-T c superconductivity,” Phys. Rev. B, 35, 8865–8868 (1987).

    Article  ADS  Google Scholar 

  70. D.S. Rokhsar and S.A. Kivelson, “Superconductivity and the quantum hardcore dimer gas,” Phys. Rev. Lett, 61, 2376–2379 (1988).

    Article  ADS  Google Scholar 

  71. N. Read and S. Sachdev, “Large-N expansion for frustrated quantum antiferromagnets,” Phys. Rev. Lett, 66, 1773–1776 (1991).

    Article  ADS  Google Scholar 

  72. V. Kalmeyer and R.B. Laughlin, “Theory of the spin liquid state of the Heisenberg antiferromagnet,” Phys. Rev. B, 39, 11879–11899 (1989).

    Article  ADS  Google Scholar 

  73. X.G. Wen, F. Wilcek, and A. Zee, “Chiral spin states and superconductivity,” Phys. Rev. B, 39, 11413–11423 (1989).

    Article  ADS  Google Scholar 

  74. P.B. Wiegmann, “Superconductivity in strongly correlated electronic systems and confinement versus deconfinement phenomenon,” Phys. Rev. Lett, 60, 821–824 (1988).

    Article  ADS  Google Scholar 

  75. L. Balents, M.P.A. Fisher, and C. Nayak, “Nodal liquid theory of the pseudogap phase of high-Tc superconductors,” Int. J. Mod. Phys. B, 12, 1033–1068 (1998).

    Article  ADS  Google Scholar 

  76. L. Balents, M.P.A. Fisher, and C. Nayak, “Dual order parameter for the nodal liquid,” Phys. Rev. B, 60, 1654–1667 (1999).

    Article  ADS  Google Scholar 

  77. T. Senthil and M.P.A. Fisher, “Z2 gauge theory of electron fractionalization in strongly correlated systems,” Phys. Rev. B, 62, 7850–7881 (2000).

    Article  ADS  Google Scholar 

  78. X.G. Wen, “Topological orders in rigid states,” Int. J. Mod. Phys. B, 4, 239–271 (1990).

    Article  ADS  Google Scholar 

  79. R. Moesner and S.L. Sondhi, “Resonating valence bond phase in the triangular lattice quantum dimer model,” Phys. Rev. Lett, 86, 1881–1884 (2001).

    Article  ADS  Google Scholar 

  80. R. Moessner, S.L. Sondhi, and E. Pradkin, “Short-ranged resonating valance bond physics, quantum dimer models, and Ising gauge theories,” Phys. Rev. B, 65, 024504–024516 (2002).

    Article  ADS  Google Scholar 

  81. T. Timusk and B. Statt, “The pseudogap in high-temperature superconductors: an experimental survey,” Rep. Prog. Phys., 62, 61–122 (1999).

    Article  ADS  Google Scholar 

  82. J.L. Tallon and J.W. Loram, “The doping dependence of T*–what is the real high T c phase diagram?” Physica C, 349, 53–68 (2001).

    Article  ADS  Google Scholar 

  83. A. Leggett, “Cuprate Superconductivity: Dependence of T c on the c-Axis Layering Structure,” Phys. Rev. Lett, 83, 392–395 (1999).

    Article  ADS  Google Scholar 

  84. P.W. Anderson, The Theory of Superconductivity in the Cuprates (Princeton University Press, Princeton, NJ) (1997).

    Google Scholar 

  85. R.B. Laughlin, “Evidence for quasiparticle decay in photoemission from underdoped cuprates,” Phys. Rev. Lett, 79, 1726–1729 (1997).

    Article  ADS  Google Scholar 

  86. D. Orgad, S.A. Kivelson, E.W. Carlson, V.J. Emery, X.J. Zhou, and Z. X. Shen, “Evidence of electron fractionalization from photoemission spectra in the high temperature superconductors,” Phys. Rev. Lett, 86, 4362–4365 (2001).

    Article  ADS  Google Scholar 

  87. X.J. Zhou, P. Bogdanov, S.A. Kellar, T. Nöda, H. Eisaki, S. Uchida, Z. Hussain, and Z.-X. Shen, “One-dimensional electronic structure and suppression of d-Wave node state in La1.28Nd0.6Sr0.12CuO4,” Science, 286, 268–272 (1999).

    Article  Google Scholar 

  88. T. Valla, A.V. Fedorov, P.D. Johnson, Q. Li, G.D. Gu, and N. Koshizuka, “Temperature dependent scattering rates at the Fermi surface of optimally doped Bi2Sr2CaCu2O8+δ ,” Phys. Rev. Lett, 85, 828–831 (2000).

    Article  ADS  Google Scholar 

  89. A.V. Fedorov, T. Valla, P.D. Johnson, Q. Li, G.D. Gu, and N. Koshizuka, “Temperature dependent photoemission studies of optimally doped Bi2Sr2CaCu2O8,” Phys. Rev. Lett, 82, 2179–2182 (1999).

    Article  ADS  Google Scholar 

  90. D.L. Feng, D.H. Lu, K.M. Shen, S. Oh, A. Andrus, J. O’Donnell, J. N. Eckstein, J. Shimoyama, K. Kishio, and Z. X. Shen, “On the similarity of the spectral weight pattern of Bi2Sr2CaCuO8+δ and La1.48Nd0.4Sr0.12CuO4,” Physica C, 341, 2097–2098 (2000).

    Article  Google Scholar 

  91. A.G. Loeser, Z.-X. Shen, M.C. Schabel, C. Kim, M. Zhang, A. Kapitulnik, and P. Fournier, “Temperature and doping dependence of the Bi-Sr-Ca-Cu-O electronic structure and fluctuation effects,” Phys. Rev. B, 56, 14185–14189 (1997).

    Article  ADS  Google Scholar 

  92. C.M. Varma, P.B. Littlewood, S. Schmittrink, E. Abrahams, and A.E. Ruckenstein, “Phenomenology of the normal state of the Cu-O high-temperature superconductors,” Phys. Rev. Lett, 63, 1996–1999 (1989).

    Article  ADS  Google Scholar 

  93. C.M. Varma, Z. Nussinov, and W. van Saarloos, “Singular Fermi liquids,” cond-mat/0103393 (2001).

    Google Scholar 

  94. E. Abrahams and C.M. Varma, “What angle-resolved photoemission experiments tell us about the microscopic theory for high-temperature superconductors,” Proc. Natl. Accad. Sci. (2000).

    Google Scholar 

  95. J.M. Harris, Z.-X. Shen, P.J. White, D.S. Marshall, M.C. Schabel, J.N. Eckstein, and I. Bozovic, “Anomalous superconducting state gap size versus Tc behavior in underdoped Bi2Sr2Ca1−x Dyx;Cu2O8,” Phys. Rev. B, 54, R15665–R15668 (1996).

    Article  ADS  Google Scholar 

  96. H. Ding, T. Yokoya, J.C. Campuzano, T. Takahashi, M. Randeria, M.R. Norman, and T.M. K.H.J. Giapintzakis, “Spectroscopic evidence for a pseudogap in the normal state of underdoped high-T c superconductors,” Nature, 382, 51–54 (1996).

    Article  ADS  Google Scholar 

  97. C. Renner, B. Revaz, J.-Y. Genoud, K. Kadowaki, and O. Fischer, “Pseudogap precursor of the superconducting gap in under-and overdoped Bi2Sr2CaCu2O8+δ,” Phys. Rev. Lett, 80, 149–152 (1998).

    Article  ADS  Google Scholar 

  98. Y. Ando, K. Segawa, S. Komiya, and A.N. Lavrov, “Electrical resistivity anisotropy from self-organized one-dimensionality in high-temperature superconductors,” Phys. Rev. Lett, 88, 137005–137008 (2002).

    Article  ADS  Google Scholar 

  99. I. Maggio-Aprile, C. Renner, A. Erb, E. Walker, and O. Fischer, “Direct vortex lattice imaging and tunneling spectroscopy of flux lines on YBa2Cu3O7−δ ,” Phys. Rev. Lett, 75, 2754–2757 (1995).

    Article  ADS  Google Scholar 

  100. C. Howald, P. Fournier, and A. Kapitulnik, “Inherent inhomogeneities in tunneling spectra of Bi2Sr2CaCu2O8−x crystals in the superconducting state,” Phys. Rev. B, 64, 100504–100507 (2001).

    Article  ADS  Google Scholar 

  101. S.H. Pan, J.P. O’Neal, R.L. Badzey, C. Chamon, H. Ding, J.R. Engelbrecht, Z. Wang, H. Eisaki, S. Uchida, A.K. Guptak, K.W. Ng, E.W. Hudson, K.M. Lang, and J.C. Davis, “Microscopic electronic inhomogeneity in the high T c superconductor Bi2Sr2CaCu2O8+x ,” Nature, 413, 282–285 (2001).

    Article  ADS  Google Scholar 

  102. J.E. Sonier, J.H. Brewer, R.F. Kiefl, D.A. Bonn, S.R. Dunsiger, W.N. Hardy, R. Liang, W.A. MacFarlane, R.I. Miller, and T.M. Riseman, “Measurements of the fundamental length scales in the vortex state of YBa2Cu3O6.60,” Phys. Rev. Lett, 79, 2875–2878 (1997).

    Article  ADS  Google Scholar 

  103. C.A.R.S. de Melo, M. Randeria, and J.R. Engelbrecht, “Crossover from BCS to Bose superconductivity: Transition temperature and time-dependent Ginzburg-Landau theory,” Phys. Rev. Lett, 71, 3202–3205 (1993).

    Article  ADS  Google Scholar 

  104. Q. Chen, I. Kosztin, B. Janko, and K. Levin, “Pairing fluctuation theory of superconducting properties in underdoped to overdoped cuprates,” Phys. Rev. Lett, 81, 4708–4711 (1998).

    Article  ADS  Google Scholar 

  105. A.S. Alexandrov and N.F. Mott, “Thermal transport in a charged Bose gas and in high-T c oxides,” Phys. Rev. Lett, 71, 1075–1078 (1993).

    Article  ADS  Google Scholar 

  106. A.S. Alexandrov and N.F. Mott, “Bipolarons,” Rep. Prog. Phys., 57, 1197–1288 (1994).

    Article  ADS  Google Scholar 

  107. Y.J. Uemura, G.M. Luke, B.J. Sternlieb, J.H. Brewer, J.F. Carolan, W.N. Hardy, R. Kadono, J.R. Kempton, R.F. Kiefl, S.R. Kreitzman, P. Mulhern, T.M. Riseman, D.L. Williams, B.X. Yang, S. Uchida, H. Takagi, J. Gopalakrishnan, A.W. Sleight, M.A. Subramanian, C.L. Chien, M.Z. Cieplak, G. Xiao, V.Y. Lee, B.W. Statt, C.E. Stronach, W.J. Kossler, and X.H. Yu, “Universal correlations between Tc and ns / m* (carrier density over effective mass) in high-T c cuprate superconductors,” Phys. Rev. Lett, 62, 2317–2320 (1989).

    Article  ADS  Google Scholar 

  108. E. Dagotto, T. Hotta, and A. Moreo, “Colossal magnetoresistant materials: the key role of phase separation,” Physics Reports, 344, 1–153 (2001).

    Article  ADS  Google Scholar 

  109. J.M. Luttinger, “Fermi surface and some simple equilibrium properties of a system of interacting fermions,” Phys. Rev., 119, 1153–1163 (1960).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  110. V.J. Emery and S.A. Kivelson, “Crossovers and phase coherence in cuprate superconductors,” J. Phys. Chem. Solids, 59, 1705–1710 (1998).

    Article  ADS  Google Scholar 

  111. A.N. Kocharian, C. Yang, and Y.L. Chiang, “Self-consistent and exact studies of pairing correlations and crossover in the one-dimensional attractive Hubbard model,” Phys. Rev. B, 59, 7458–7472 (1999).

    Article  ADS  Google Scholar 

  112. A.N. Kocharian, C. Yang, and Y.L. Chiang, “Phase diagram and BCS-Bose condensation crossover in ID and 2D Hubbard models,” Physica C, 364–365, 131–133 (2001).

    Article  Google Scholar 

  113. J.W. Allen, CG. Olson, M.B. Maple, J.-S. Kang, L.Z. Liu, J.-H. Park, R.O. Anderson, W.P. Ellis, JT. Market, Y. Dalichaouch, and R. Liu, “Resonant photoemission study of Nd2−x CexCuO4−y : Nature of electronic states near the Fermi level,” Phys. Rev. Lett, 64, 595–598 (1990).

    Article  ADS  Google Scholar 

  114. R.O. Anderson, R. Cleassen, J.W. Allen, CG. Olson, C. Janowitz, L.Z. Liu, J.-H. Park, M.B. Maple, Y. Dalichaouch, M.C de Andrade, R.F. Jardim, E.A. Early, S.-J. Ho, and W.P. Ellis, “Luttinger Fermi surface of metallic gap spectral weight in Nd1.85Ce0.15CuO4−y ,” Phys. Rev. Lett, 70, 3163–3166 (1993).

    Article  ADS  Google Scholar 

  115. T. Watanabe, T. Takahashi, S. Suzuki, S. Sato, and H. Katayama-Yoshida, “Inverse-photoemission study of hole-concentration dependence of the electronic structure in Bi2Sr2Ca1−x YxCu2O8 (x=0.0−0.05),” Phys. Rev. B, 44, 5316–5317 (1991).

    Article  ADS  Google Scholar 

  116. A. Ino, C Kim, M. Nakamura, T. Yoshida, T. Mizokawa, Z.-X. Shen, A. Fujimori, T. Kakeshita, H. Eisaki, and S. Uchida, “Electronic structure of La2−x SrxCuO4 in the vicinity of the superconductor-insulator transition,” Phys. Rev. B, 62, 4137–4141 (2000).

    Article  ADS  Google Scholar 

  117. G. Rietveld, NY. Chen, and D. van der Marel, “Anomalous temperature dependence of the work function in YBa2Cu3O7−δ ,” Phys. Rev. B, 69, 2578–2581 (1992), a rather larger value of the chemical potential shift at T c, but still very small compared to the bandwidth, was obtained from high precision measurements of the work function.

    Article  ADS  Google Scholar 

  118. D.J. Scalapino, J.E. Loh, and J.E. Hirsch, “d-wave pairing near a spin density wave instability,” Phys. Rev. B, 34, 8190–8192 (1986).

    Article  ADS  Google Scholar 

  119. W. Kohn and J.M. Luttinger, “New mechanism for superconductivity,” Phys. Rev. Lett, 15, 524–526 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  120. V.J. Emery, “Theory of high-T c superconductivity in oxides,” Phys. Rev. Lett, 58, 2794–2797 (1987).

    Article  ADS  Google Scholar 

  121. G. Kotliar and J. Liu, “Superexchange mechanism and d-wave superconductivity,” Phys. Rev. B, 38, 5142–5145 (1988).

    Article  ADS  Google Scholar 

  122. C. Gros, R. Joynt, and T.M. Rice, “Superconductivity instability in the large-U limit of the two-dimensional Hubbard model,” Z. Phys. B, 68, 425–432 (1987).

    Article  ADS  Google Scholar 

  123. D.J. Scalapino, E. Loh, and J.E. Hirsch, “Fermi-surface instabilities and superconducting d-wave pairing,” Phys. Rev. B, 35, 6694–6698 (1987).

    Article  ADS  Google Scholar 

  124. M. Grilli, R. Raimondi, C Castellani, C. Di Castro, and G. Kotliar, “Superconductivity, phase separation, and charge-transfer instability in the U=∞ limit of the three-band model of the CuO2 planes,” Phys. Rev. Lett, 67, 259–262 (1991).

    Article  ADS  Google Scholar 

  125. A. Perali, C. Castellani, C. Di Castro, and M. Grilli, “d-wave superconductivity near charge instabilities,” Phys. Rev. B, 54, 16216–16225 (1996).

    Article  ADS  Google Scholar 

  126. D.A. Wollman, D.J.V. Harlingen, W.C. Lee, D.M. Ginsberg, and A.J. Leggett, “Experimental determination of the superconducting pairing state in YBCO from phase coherence in YBCO-Pb SQUIDs,” Phys. Rev. Lett., 71, 2134–2147 (1993).

    Article  ADS  Google Scholar 

  127. C.C. Tsuei, J.R. Kirtley, C.C. Chi, L.S. Yu-Jahnes, A. Gupta, T. Shaw, J.Z. Sun, and M.B. Ketchen, “Pairing symmetry and flux quantization in a tricrystal superconducting ring of YBa2Cu3O7−· ,” Phys. Rev. Lett., 73, 593 (1994).

    Article  ADS  Google Scholar 

  128. K.A. Kouznetsov, A.G. Sun, B. Chen, A.S. Katz, S.R. Bahcall, J. Clarke, R.C. Dynes, D.A. Gajewski, S.H. Han, M.B. Maple, J. Giapintzakis, J.-T. Kim, and D.M. Ginsberg, “C-axis Josephson tunneling between YBa2Cu3O7−· and Pb: direct evidence for mixed order parameter symmetry in a high-T c superconductor,” Phys. Rev. Lett., 79, 3050–3053 (1997).

    Article  ADS  Google Scholar 

  129. R.A. Klemm, G. Arnold, A. Bille, and K. Scharnberg, “Theory of c-axis twist Bi2212 Josephson junctions: Strong evidence for incoherent tunneling and s-wave superconductivity,” Physica C 341, 1663–1664 (2000).

    Article  ADS  Google Scholar 

  130. A. Damascelli, D.H. Lu, and Z.-X. Shen, “Prom Mott insulator to overdoped superconductor: Evolution of the electronic structure of cuprates studied by ARPES,” J. Electron Spectr. Relat. Phenom., 165, 117–118 (2001).

    Google Scholar 

  131. J.R. Schrieffer, S.C. Zhang, and X.G. Wen, “Spin-bag mechanism of high-temperature superconductivity,” Phys. Rev. Lett, 60, 944–947 (1988).

    Article  ADS  Google Scholar 

  132. M. Granath, V. Oganesyan, S.A. Kivelson, E. Pradkin, and V.J. Emery, “Nodal quasiparticles in stripe ordered superconductors,” Phys. Rev. Lett., 87, 167011–167014 (2001).

    Article  ADS  Google Scholar 

  133. M. Vojta, Y. Zhang, and S. Sachdev, “Quantum phase transitions in d-wave superconductors,” Phys. Rev. Lett, 85, 4940–4943 (2000).

    Article  ADS  Google Scholar 

  134. M. Kugler, O. Fischer, C. Renner, S. Ono, and Y. Ando, “Scanning tunneling spectroscopy of Bi2Sr2CuO6 + δ: new evidence for the common origin of the pseudogap and superconductivity,” Phys. Rev. Lett, 86, 4911 (2001).

    Article  ADS  Google Scholar 

  135. N.J. Curro, P.C. Hammel, B.J. Suh, M. Hucker, B. Buchner, U. Ammerahl, and A. Revcolevschi, “Inhomogeneous low frequency spin dynamics in La1.65Eu0.2Sr0.15CuO4,” Phys. Rev. Lett, 85, 642–645 (2000).

    Article  ADS  Google Scholar 

  136. H. Takagi, B. Batlogg, H.L. Kao, J. Kwo, R.J. Cava, J.J. Krajewski, and W.F.P. Jr., “Systematic evolution of temperature-dependent resistivity in La2−x SrxCuO4,” Phys. Rev. Lett, 69, 2975–2978 (1992).

    Article  ADS  Google Scholar 

  137. B. Bucher, P. Steiner, J. Karpinski, E. Kaldis, and P. Wächter, “Influence of the spin gap on the normal state transport in YBa2Cu4O8,” Phys. Rev. Lett, 70, 2012–2015 (1993).

    Article  ADS  Google Scholar 

  138. K. Takenaka, K. Mizuhashi, H. Takagi, and S. Uchida, “Interplane charge transport in YBa2Cu3O7−y : Spin-gap effect on in-plane and out-of-plane resistivity,” Phys. Rev. B, 50, 6534–6537 (1994).

    Article  ADS  Google Scholar 

  139. A.N. Lavrov, Y. Ando, and S. Ono, “Two mechanisms of pseudogap formation in Bi-2201: evidence from the c-axis magnetoresistance,” Euro. Phys. Lett, 57, 267–273 (2002).

    Article  ADS  Google Scholar 

  140. J.W. Loram, K.A. Mirza, J.R. Cooper, and W.Y. Liang, “Electronic specific heat of YBa2Cu3O6+x from 1.8 to 300 K,” Phys. Rev. Lett, 71, 1740–1743 (1993).

    Article  ADS  Google Scholar 

  141. J. Orenstein, G.A. Thomas, A.J. Millis, S.L. Cooper, D.H. Rapkine, T. Timusk, L.F. Schneemeyer, and J.V. Waszczak, “Frequency-and temperature-dependent conductivity in YBa2Cu3O6+x crystals,” Phys. Rev. B, 42, 6342–6362 (1990).

    Article  ADS  Google Scholar 

  142. A. Puchkov, D.N. Basov, and T. Timusk, “Pseudogap state in high-T c superconductors: an infrared study,” J.Phys Cond. Matt, 8, 10049 (1996).

    Article  ADS  Google Scholar 

  143. C.C. Homes, T. Timusk, R. Liang, D.A. Bonn, and W.N. Hardy, “Optical conductivity of c axis oriented YBa2Cu3O6.70: Evidence for a pseudogap,” Phys. Rev. Lett, 71, 1645–1648 (1993).

    Article  ADS  Google Scholar 

  144. D. Basov, H.A. Mook, B. Dabrowski, and T. Timusk, “c-axis response of single-and double-layered cuprates,” Phys. Rev. B, 52, R13141–R13144 (1995).

    Article  ADS  Google Scholar 

  145. M. Arai, T. Nishijima, Y. Endoh, T. Egami, S. Tajima, K. Tomimoto, Y. ShiO’Hara, M. Takahashi, A. Garrett, and S.M. Bennington, “Incommensurate spin dynamics of underdoped superconductor YBa2Cu3O6.7,” Phys. Rev. Lett, 83, 608–611 (1999).

    Article  ADS  Google Scholar 

  146. P.C. Dai, H.A. Mook, S.M. Hayden, G. Aeppli, T.G. Perring, R.D. Hunt, and F. Dogan, “The magnetic excitation spectrum and thermodynamics of high T c superconductors,” Science, 284, 1344–1347 (1999).

    Article  ADS  Google Scholar 

  147. B. Batlogg and V.J. Emery, “Crossovers in cuprates,” Nature, 382, 20 (1996).

    Article  ADS  Google Scholar 

  148. X.G. Wen and P.A. Lee, “Theory of underdoped cuprates,” Phys. Rev. Lett, 76, 503–506 (1996).

    Article  ADS  Google Scholar 

  149. E.W. Carlson, D. Orgad, S.A. Kivelson, and V.J. Emery, “Dimensional crossover in quasi-one-dimensional and high T c superconductors,” Phys. Rev. B, 62, 3422–3437 (2000).

    Article  ADS  Google Scholar 

  150. B.G. Levi, Physics Today, 49, 17 (1996).

    Google Scholar 

  151. D.-H. Lee, “Superconductivity in a doped Mott insulator,” Phys. Rev. Lett, 84, 2694–2697 (2000).

    Article  ADS  Google Scholar 

  152. S. Sachdev, “Kagome-acute-and triangular-lattice Heisenberg antiferromagnets: Ordering from quantum fluctuations and quantum-disordered ground states with unconfined bosonic spinons,” Phys. Rev. B, 45, 12377–12396 (1992).

    Article  ADS  Google Scholar 

  153. M.U. Ubbens and P.A. Lee, “Superconductivity phase diagram in the gaugefield description of the t-J model,” Phys. Rev. B, 49, 6853–6863 (1994).

    Article  ADS  Google Scholar 

  154. S.-C. Zhang, “SO(5) quantum nonlinear sigma model theory of the high-T c superconductivity,” Science, 275, 1089–1096 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  155. S.-C. Zhang, J.-P. Hu, E. Arrigoni, W. Hanke, and A. Auerbach, “Projected SO(5) models,” Phys. Rev. B, 60, 13070–13084 (1999).

    Article  ADS  Google Scholar 

  156. A. Auerbach and E. Altman, “Projected SO(5) Hamiltonian for cuprates and its applications,” Int. Jour. Mod. Phys. B, 15, 2509–2518 (2001).

    Article  ADS  Google Scholar 

  157. J. Ye, “Thermally generated vortices, gauge invariance, and electron spectral function in the pseudogap regime,” Phys. Rev. Lett, 87, 227003–227006 (2001).

    Article  ADS  Google Scholar 

  158. A. Abanaov, A.V. Chubukov, and J. Schmalian, “Fingerprints of spin mediated pairing in cuprates,” Journal of Electron Spectroscopy and Related Phenomena, 117–118, 129–151 (2001).

    Article  Google Scholar 

  159. M. Takigawa, A.P. Reyes, P.C. Hammel, J.D. Thompson, R.H. Heffner, Z. Fisk, and K.C. Ott, “Cu and O NMR studies of the magnetic properties of YBa2Cu3O6.63 (T c=62 K),” Phys. Rev. B, 43, 247–257 (1991).

    Article  ADS  Google Scholar 

  160. H.A. Mook and F. Dogan, “Charge fluctuations in YBa2Cu3O7−x high-temperature superconductors,” Nature, 401, 145–148 (1999).

    Article  ADS  Google Scholar 

  161. P. Dai, H.A. Mook, and F. Dogan, “Incommensurate magnetic fluctuations in YBa2Cu3O6.6,” Phys. Rev. B, 80, 1738–1741 (1998).

    Article  ADS  Google Scholar 

  162. J.M. Tranquada, P.M. Gehring, G. Shirane, S. Shamoto, and M. Sato, “Neutron-scattering study of the dynamical spin susceptibility in YBa2Cu3O6.6,” Phys. Rev. B, 46, 5561–5575 (1992).

    Article  ADS  Google Scholar 

  163. H.A. Mook, P. Dai, and F. Dogan, “Charge and spin structure in YBa2Cu3O6.35,” Phys. Rev. Lett, 88, 097004–097007 (2002).

    Article  ADS  Google Scholar 

  164. S. Wakimoto, R.J. Birgeneau, M.A. Kastner, Y.S. Lee, R. Erwin, P.M. Gehring, S.H. Lee, M. Fujita, K. Yamada, Y. Endoh, K. Hirota, and G. Shirane, “Direct observation of a one-dimensional static spin modulation in insulating La1.95Sr0.05CuO4,” Phys. Rev. B, 61, 3699–3706 (2000).

    Article  ADS  Google Scholar 

  165. H. Kimura, H. Matsushita, K. Hirota, Y. Endoh, K. Yamada, G. Shirane, Y.S. Lee, M.A. Kastner, and R.J. Birgeneau, “Incommensurate geometry of the elastic magnetic peaks in superconducting La1.88Sr0.12CuO4,” Phys. Rev. B, 61, 14366–14369 (2000).

    Article  ADS  Google Scholar 

  166. B.O. Wells, Y.S. Lee, M.A. Kastner, R.J. Christianson, R.J. Birgeneau, K. Yamada, Y. Endoh, and G. Shirane, “Incommensurate spin fluctuations in high-transition temperature superconductors,” Science, 277, 1067–1071 (1997).

    Google Scholar 

  167. M. Matsuda, M. Fujita, K. Yamada, R.J. Birgeneau, Y. Endoh, and G. Shirane, “Electronic phase separation in lightly doped La2−x SrxCuO4,” Phys. Rev. B, 65, 134515 (2002).

    Article  ADS  Google Scholar 

  168. P.A. Lee and N. Nagaosa, “Gauge theory of the normal state of high-T c superconductors,” Phys. Rev. B, 46, 5621–39 (1992).

    Article  ADS  Google Scholar 

  169. C. Meingast, V. Pasler, P. Nagel, A. Rykov, S. Tajima, and P. Olsson, “Phase fluctuations and the pseudogap in YBa2Cu3O7−δ ,” Phys. Rev. Lett, 86, 1606–1609 (2001).

    Article  ADS  Google Scholar 

  170. J. Corson, R. Mallozzi, J. Orenstein, J.N. Eckstein, and I. Bozovic, “Vanishing of phase coherence in underdoped Bi2Sr2CaCu2O8+δ ,” Nature, 398, 221–223 (1999).

    Article  ADS  Google Scholar 

  171. D.A. Bonn, S. Kamal, A. Bonakdarpour, L. Ruixing, W.N. Hardy, C.C. Homes, and D.N.B.T. Timusk, “Surface impedance studies of YBCO,” Czech. J. Phys., 46, 3195–3202 (1996).

    Article  Google Scholar 

  172. V. Pasler, P. Schweiss, C. Meingast, B. Obst, H. Wuhl, A.I. Rykov, and S. Tajima, “3D-XY critical fluctuations of the thermal expansivity in detwinned YBa2Cu3O7−δ single crystals near optimal doping,” Phys. Rev. Lett, 81, 1094–1097 (1998).

    Article  ADS  Google Scholar 

  173. C. Varma, “Pseudogap phase and the quantum-critical point in copper-oxide metals,” Phys. Rev. Lett, 83, 3538–3541 (1999).

    Article  ADS  Google Scholar 

  174. S. Chakravarty, unpublished.

    Google Scholar 

  175. T. Valla, P.D. Johnson, Z. Yusof, B. Wells, Q. Li, S.M. Loureiro, R.J. Cava, M. Mikami, Y. Mori, M. Yoshimura, and T. Sasaki, “Coherence-incoherence and dimensional crossover in layered strongly correlated metals,” submitted to Science (2002).

    Google Scholar 

  176. J. Zaanen, “Superconductivity: self-organized one dimensionality,” Science, 286, 251–252 (1999).

    Article  Google Scholar 

  177. Preliminary evidence of the existence of nematic order in La2−x SrxCuO4 and YBa2Cu3O7-δ can be found in [99].

    Google Scholar 

  178. J.P. Eisenstein, M.P. Lilly, K.B. Cooper, L.N. Pfeiffer, and K.W. West, “New collective states of 2D electrons in high Landau levels,” Physica E, 9, 1–8 (2001).

    Article  ADS  Google Scholar 

  179. M.M. Fogler, “Stripe and bubble phases in quantum Hall systems,” cond-mat/0111001 (2001).

    Google Scholar 

  180. M.M. Fogler, “Quantum Hall liquid crystals,” cond-mat/0111049 (2001).

    Google Scholar 

  181. V.J. Emery, “Theory of the one-dimensional electron gas,” in “Highly Conducting One-Dimensional Solids,” edited by J.T. Devreese, R.P. Evrard, and V.E. van Dören, 327 (Plenum, New York) (1979).

    Google Scholar 

  182. J. Solyom, “The Fermi gas model of one-dimensional conductors,” Adv. Phys., 28, 201–303 (1979).

    Article  ADS  Google Scholar 

  183. E. Fradkin, Field Theories of Condensed Matter Systems (Addison-Wesley, Massachusetts) (1991).

    MATH  Google Scholar 

  184. J. von Delft and H. Schoeller, “Bosonization for beginners — Refermionization for experts,” Annalen Phys., 7, 225–305 (1998).

    Article  ADS  MATH  Google Scholar 

  185. A.O. Gogolin, A.A. Nersesyan, and A.M. Tsvelik, Bosonization and Strongly Correlated Systems (Cambridge University Press, Cambridge) (1998).

    Google Scholar 

  186. H.J. Schulz, G. Guniberti, and P. Pieri, “Fermi liquids and Luttinger liquids,” cond-mat/9807366 (1998).

    Google Scholar 

  187. J. Voit, “One-dimensional Fermi liquids,” Rep. Prog. Phys., 58, 977–1116 (1995).

    Article  ADS  Google Scholar 

  188. J.M. Kosterlitz and D.J. Thouless, “Ordering, metastability and phase transitions in two-dimensional systems,” J. Phys. C, 6, 1181–1203 (1973).

    Article  ADS  Google Scholar 

  189. T. Giamarchi and H.J. Schulz, “Correlation functions of one-dimensional quantum systems,” Phys. Rev. B, 39, 4620–4629 (1989).

    Article  ADS  Google Scholar 

  190. A. Luther and V.J. Emery, “Backward scattering in the one-dimensional electron gas,” Phys. Rev. Lett., 33, 589–592 (1974).

    Article  ADS  Google Scholar 

  191. N. Kawakami and S.K. Yang, “Luttinger anomaly exponent of momentum distribution in the Hubbard chain,” Phys. Lett. A, 148, 359–362 (1990).

    Article  ADS  Google Scholar 

  192. R.M. Noack, N. Bulut, D.J. Scalapino, and M.G. Zacher, “Enhanced {ze434-1} pairing correlations in the two-leg Hubbard ladder,” Phys. Rev. B, 56, 7162–7166 (1997).

    Article  ADS  Google Scholar 

  193. T. Valla, A.V. Fedorov, P.D. Johnson, and S.L. Hulber, “Many-body effects in angle-resolved photoemission: Quasiparticle energy and lifetime of a Mo(110) surface state,” Phys. Rev. Lett, 83, 2085–2088 (1999).

    Article  ADS  Google Scholar 

  194. A. Luther and I. Peschel, “Single-particle states, Kohn anomaly and pairing fluctuations in one dimension,” Phys. Rev. B, 9, 2911–2919 (1974).

    Article  ADS  Google Scholar 

  195. V. Meden and K. Schönhammer, “Spectral functions for the Tomonaga-Luttinger model,” Phys. Rev. B, 46, 15753–15760 (1992).

    Article  ADS  Google Scholar 

  196. J. Voit, “Charge-spin separation and the spectral properties of Luttinger liquids,” Phys. Rev. B, 47, 6740–6743 (1993).

    Article  ADS  Google Scholar 

  197. D. Orgad, “Spectral functions for the Tomonga-Luttinger and Luther-Emery liquids,” Phil. Mag. B, 81, 377–398 (2001).

    ADS  Google Scholar 

  198. G.-H. Gweon, J.W. Allen, and J.D. Denlinger, “Ubiquitous generalized spectral signatures of electron fractionalization in quasi-low dimensional metals,”

    Google Scholar 

  199. F.H.L. Essler and A.M. Tsvelik, “Weakly coupled one-dimensional Mott insulators,” Phys. Rev. B, 65, 115117–115129 (2002).

    Article  ADS  Google Scholar 

  200. D.J. Scalapino, Y. Imry, and P. Pincus, “Generalized Ginzburg-Landau theory of pseudo-one-dimensional systems,” Phys. Rev. B, 11, 2042–2048 (1975).

    Article  ADS  Google Scholar 

  201. E. Arrigoni, “Crossover to Fermiliquid behavior for weakly coupled Luttinger liquids in the anisotropic large-dimension limit,” Phys. Rev. B, 61, 7909–7929 (2000).

    Article  ADS  Google Scholar 

  202. D.L. Feng, D.H. Lu, K.M. Shen, C. Kim, H. Eisaki, A. Damascelli, R. Yoshizaki, J. Shimoyama, K. Kishio, G.D. Gu, S. Oh, A. Andrus, J. O’Donnell, J.N. Eckstein, and Z.X. Shen, “Signature of superfluid density in the single-particle excitation spectrum of Bi2Sr2CaCu2)8+δ ,” Science, 289, 277–281 (2000).

    Article  ADS  Google Scholar 

  203. H. Ding, J.R. Engelbrecht, Z. Wang, J.C. Campuzano, S.-C. Wang, H.-B. Yang, R. Rogan, T. Takahashi, K. Kadowaki, and D.G. Hinks, “Coherent quasiparticle weight and its connection to high-Tc superconductivity from angle-resolved photoemission,” Phys. Rev. Lett., 87, 227001–227004 (2000).

    Article  ADS  Google Scholar 

  204. S. Biermann, A. Georges, A. Lichtenstein, and T. Giamarchi, “Deconfinement transition and Luttinger to Fermi liquid crossover in quasi-one-dimensional systems,” Phys. Rev. Lett., 87, 276405–276408 (2001).

    Article  ADS  Google Scholar 

  205. S. Biermann, A. Georges, T. Giamarchi, and A. Lichtenstein, “Quasi-one-dimensional organic conductors: dimensional crossover and some puzzles,” cond-mat/0201542 (2002).

    Google Scholar 

  206. L. Yin and S. Chakravarty, “Spectral anomaly and high temperature superconductors,” Int. J. Mod. Phys. B, 7, 805–845 (1996).

    Article  ADS  Google Scholar 

  207. V.J. Emery, E. Fradkin, S.A. Kivelson, and T.C. Lubensky, “Quantum theory of the smectic metal state in stripe phases,” Phys. Rev. Lett., 85, 2160–2163 (2000).

    Article  ADS  Google Scholar 

  208. A.H. Castro Neto, “Stripes, vibrations, and superconductivity,” Phys. Rev. B, 64, 104509–104535 (2001).

    Article  ADS  Google Scholar 

  209. A. Vishwanath and D. Carpentier, “Two-Dimensional anisotropic non-Fermiliquid phase of coupled Luttinger liquids,” Phys. Rev. Lett., 86, 676–679 (2001).

    Article  ADS  Google Scholar 

  210. R. Mukhopadhyay, C.L. Kane, and T.C. Lubensky, “Sliding Luttinger liquid phases,” Phys. Rev. B, 64, 045120–045137 (2001).

    Article  ADS  Google Scholar 

  211. S.L. Sondhi and K. Yang, “Sliding phases via magnetic fields,” Phys. Rev. B, 63, 054430–054436 (2001).

    Article  ADS  Google Scholar 

  212. S.A. Kivelson, “Electron fractionalization,” Synth. Met., 125 (2001).

    Google Scholar 

  213. T. Senthil and O. Motrunich, “Microscopic models for fractionalized phases in strongly correlated systems,” cond-mat/0201320 (2002).

    Google Scholar 

  214. P. Fazekas and P.W. Anderson, “On the ground state properties of the anisotropic triangular antiferromagnet. (Application of anisotropic Heisenberg model),” Phil. Mag., 30, 423–440 (1974).

    Article  ADS  Google Scholar 

  215. R.B. Laughlin, “The relationship between high-temperature superconductivity and the fractional quantum Hall effect,” Science, 242, 525–533 (1988).

    Article  ADS  Google Scholar 

  216. N. Read and B. Chakraborty, “Statistics of the excitations of the resonating-valence-bond state,” Phys. Rev. B, 40, 7133–7140 (1989).

    Article  ADS  Google Scholar 

  217. V. Kalmeyer and R.B. Laughlin, “Equivalence of the resonating-valence-bond and fractional quantum Hall states,” Phys. Rev. Lett., 59, 2095–2098 (1987).

    Article  ADS  Google Scholar 

  218. S.A. Kivelson, “Statistics of holons in the quantum hard-core dimer gas,” Phys. Rev. B, 39, 259–264 (1989).

    Article  ADS  Google Scholar 

  219. E. Demier, C. Nayak, H.-Y. Kee, Y.B. Kim, and T. Senthil, “Fractionalization patterns in strongly correlated electron systems: Spin-charge separation and beyond,” cond-mat/0105446 (2001).

    Google Scholar 

  220. F.D.M. Haidane, “O(3) nonlinear sigma model and the topological distinction between integer-and half-integer-spin antiferromagnets in two dimensions,” Phys. Rev. Lett., 61, 1029–1032 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  221. S. Chakravarty, B.I. Halperin, and D. Nelson, “Two-dimensional quantum Heisenberg antiferromagnet at low temperatures,” Phys. Rev. B, 39, 2344–2371 (1989).

    Article  ADS  Google Scholar 

  222. S. Chakravarty, B.I. Halperin, and D. Nelson, “Low-temperature behavior of two-dimensional quantum antiferromagnets,” Phys. Rev. Lett., 60, 1057–1060 (1988).

    Article  ADS  Google Scholar 

  223. R. Coldea, S.M. Hayden, G. Aeppli, T.G. Perring, C.D. Frost, T.E. Mason, S.-W. Cheong, and Z. Fisk, “Spin waves and electronic interactions in La2CuO4,” Phys. Rev. Lett., 86 (2001).

    Google Scholar 

  224. R.J. Birgeneau, A. Aharony, N.R. Belk, F.C. Chou, Y. Endoh, M. Greven, S. Hosoya, M.A. Kastner, CH. Lee, Y.S. Lee, G. Shirane, S. Wakimoto, B.O. Wells, and K. Yamada, “Magnetism and magnetic fluctuations in La2−x SrxCuO4 for x=0 (2D antiferromagnet), 0.04 (3D spin glass) and x=0.15 (superconductor),” Jour. Phys. Chem. Solids, 56, 1912–1919 (1995).

    Google Scholar 

  225. A. Weidinger, C. Niedermayer, A. Golnik, R. Simon, E. Recknagel, J.I. Budnick, B. Chamberland, and C. Baines, “Observation of magnetic ordering in superconducting La2−x SrxCuO4 by muon spin rotation,” Phys. Rev. Lett., 62 (1989).

    Google Scholar 

  226. C. Niedermayer, C. Bernhard, T. Blasius, A. Golnik, A. Moodenbaugh, and J.I. Budnick, “Common phase diagram for antiferromagnetism in La2−x SrxCuO4 and Y1−x ;CaxBa2Cu3O6 as seen by muon spin rotation,” Phys. Rev. Lett., 80 (1999).

    Google Scholar 

  227. C. Panagopoulos, J.L. Tallon, B.D. Rainford, T. Xiang, J.R. Cooper, and C.A. Scott, “Evidence for a generic novel quantum transition in high-Tc cuprates,” cond-mat/0204106 (2002).

    Google Scholar 

  228. P. Azaria, C. Hooley, P. Lecheminant, C. Lhuillier, and A.M. Tsvelik, “Kagome lattice antiferromagnet stripped to its basics,” Phys. Rev. Lett., 81, 1694–1697 (1998).

    Article  ADS  Google Scholar 

  229. W. LiMing, G. Misguich, P. Sindzingre, and C. Lhuillier, “From Neel long-range order to spin liquids in the multiple-spin exchange model,” Phys. Rev. B, 62, 6372–6377 (2000).

    Article  ADS  Google Scholar 

  230. G. Misguich, B. Bernu, C. Lhuillier, and C. Waldtmann, “Spin liquid in the multiple-spin exchange model on the triangular lattice: 3He on graphite,” Phys. Rev. Lett., 81, 1098–1101 (1998).

    Article  ADS  Google Scholar 

  231. C. Lhuillier and G. Misguich, “Frustrated quantum magnets,” cond-mat/0109146 (2001).

    Google Scholar 

  232. S. Chakravarty, S.A. Kivelson, C. Nayak,, and K. Volker, “Wigner glass, spin liquids and the metal-insulator transition,” Phil. Mag. B, 79 (1999).

    Google Scholar 

  233. A.V. Chubukov, S. Sachdev, and T. Senthil, “Quantum phase transitions in frustrated quantumantiferromagnets,” Nucl. Phys. B, 426, 601–643 (1994).

    Article  ADS  Google Scholar 

  234. R. Meservey and B.B. Schwartz, “equilibrium properties: comparison of experimental results with predictions of the BCS theory,” in “Superconductivity,” edited by R.D. Parks, vol. 1 (Marcel Deckker, Inc., New York, NY) (1969).

    Google Scholar 

  235. E.A. Lynton, Superconductivity (Methuen, London) (1962).

    MATH  Google Scholar 

  236. T.P. Orlando, E.J. McNiff Jr., S. Foner, and M.R. Beasley, “Critical fields, Pauli paramagnetic limiting, and material parameters of Nb3Sn and V3Si,” Phys. Rev. B, 19, 4545–4561 (1979).

    Article  ADS  Google Scholar 

  237. Y.G. Naidyuk and I.K. Yanson, “Point-contact spectroscopy of heavy-fermion systems,” J. Phys. Cond. Matt., 10, 8905–8938 (1998).

    Article  ADS  Google Scholar 

  238. M.B. Maple, J.W. Chen, S.E. Lambert, Z. Fisk, J.L. Smith, H.R. Ott, J.S. Brooks, and M.J. Naughton, “Upper critical magnetic field of the heavy-fermion superconductor UBe13,” Phys. Rev. Lett., 54, 477–480 (1985).

    Article  ADS  Google Scholar 

  239. F. Gross, K. Andres, and S. Chandrasekhar, “Experimental determination of the absolute value of the London penetration depth in the heavy fermion superconductors UBe13 and UPt3,” Physica C, 162–164, 419–420 (1989).

    Article  Google Scholar 

  240. F. Sharifi, A. Pargellis, R.C. Dynes, B. Miller, E.S. Hellman, J. Rosamilia, and E.H.H. Jr., “Electron tunneling in the high-Tc bismuthate superconductors,” Phys. Rev. B, 44, 12521–12524 (1991).

    Article  ADS  Google Scholar 

  241. Y.J. Uemura, L.P. Le, G.M. Luke, B.J. Sternlieb, W.D. Wu, J.H. Brewer, T.M. Riseman, C.L. Seaman, M.B. Maple, M. Ishikawa, D.G. Hinks, J.D. Jorgensen, G. Saito, and H. Yamochi, “Basic similarities among cuprate, bismuthate, organic, chevrel-phase, and heavy-fermion superconductors shown by penetration-depth measurements,” Phys. Rev. Lett., 66, 2665–2668 (1991).

    Article  ADS  Google Scholar 

  242. O. Gunnarsson, “Superconductivity in fullendes,” Rev. Mod. Phys., 69, 575–606 (1997).

    Article  ADS  Google Scholar 

  243. Y.J. Uemura, A. Keren, L.P. Le, G.M. Luke, B.J. Sternlieb, W.D. Wu, J.H. Brewer, R.L. Whetten, S.M. Huang, S. Lin, R.B. Kaner, F. Diederich, S. Donovan, G. Gruner, and K. Holczer, “Magnetic-field penetration depth in K3C60 measured by muon spin relaxation,” Nature, 352, 605–607 (1991).

    Article  ADS  Google Scholar 

  244. A.P. Ramirez, Superconductivity Rev., 1, 1–101 (1994).

    Google Scholar 

  245. A.S. Alexandrov, “Nonadiabatic polaronic superconductivity in MgB2 and cuprates,” Physica C, 363, 231–236 (2001).

    Article  ADS  Google Scholar 

  246. H. Schmidt, J.F. Zasadzinski, K.E. Gray, and D.G. Hinks, “Evidence for two-band superconductivity from break junction tunneling on MgB2,” Phys. Rev. Lett., 88, 127002–127005 (2002).

    Article  ADS  Google Scholar 

  247. A.V. Sologubenko, J. Jun, S.M. Kazakov, J. Karpinski, and H.R. Ott, “Temperature dependence and anisotropy of the bulk upper critical field H c2 of MgB2,” Phys. Rev. B, 65, R180505–R180508 (2002).

    Article  ADS  Google Scholar 

  248. T. Arai, K. Ichimura, K. Nomur, S. Takasaki, J. Yamada, S. Nakatsuji, and H. Anzai, “Superconducting and normal-state gaps in κ-(BEDT-TTF)2Cu(NCS)2 studied by STM spectroscopy,” Solid State Commun., 116, 679–682 (2000).

    Article  ADS  Google Scholar 

  249. Y.J. Uemura, A. Keren, L.P. Le, G.M. Luke, W.D. Wu, Y. Kubo, T. Manako, Y. Shimakawa, M. Subramanian, J.L. Cobb, and J.T. Markert, “Magnetic-field penetration depth in Tl2Ba2CuO6+δ in the overdoped regime,” Nature, 364, 605–607 (1993).

    Article  ADS  Google Scholar 

  250. R. Prozorov, R.W. Giannetta, A. Carrington, P. Fournier, R.L. Greene, P. Guptasarma, D.G. Hinks, and A.R. Banks, “Measurements of the absolute value of the penetration depth in high-T c superconductors using a low-T c superconductive coating,” Appl. Phys. Lett., 77, 4202 (2000).

    Article  ADS  Google Scholar 

  251. A. Biswas, P. Fournier, V.N. Smolyaninova, R.C. Budhani, J.S. Higgins, and R.L. Greene, “Gapped tunneling spectra in the normal state of Pr2−x CexCuO4,” Phys. Rev. B, 64, 104519–104526 (2001).

    Article  ADS  Google Scholar 

  252. Kajitani, K. Hiraga, S. Hosoya, and T.F.K.O.-I.Y. Syono, “Structural study of oxygen-saturated or quenched Pr2−x CexCuO4 with xi=0.15,” Physica C, 178, 397–404 (1991).

    Article  ADS  Google Scholar 

  253. L. Ozyuzer, Z. Yusof, J.F. Zasadzinski, R. Mogilevsky, D.G. Hinks, and K.E. Gray, “Evidence of {ze438-1} symmetry in the tunneling conductance density of states of Tl2Ba2CuO6,” Phys. Rev. B, 57, R3245–R3248 (1998).

    Article  ADS  Google Scholar 

  254. C. Niedermayer, C. Bernhard, U. Binninger, H. Glückler, J.L. Tallon, E.J. Ansaldo, and J.I. Budnick, “Muon spin rotation study of the correlation between Tc and ns/m* in overdoped Tl2Ba2CuO6+δ ,” Phys. Rev. Lett., 71, 1764 (1993).

    Article  ADS  Google Scholar 

  255. M. Kang, G. Blumberg, M.V. Klein, and N.N. Kolesnikov, “Resonance Raman study of the superconducting gap and low energy excitations in Tl2Ba2CuO6+δ superconductors,” Phys. Rev. Lett., 77, 4434 (1996).

    Article  ADS  Google Scholar 

  256. N. Miyakawa, P. Guptasarma, J.F. Zasadzinski, D.G. Hinks, and K.E. Gray, “Strong dependence of the superconducting gap on oxygen doping from tunneling measurements on Bi2Sr2CaCu2O8−δ ,” Phys. Rev. Lett., 80, 157–160 (1998).

    Article  ADS  Google Scholar 

  257. M. Niderost, R. Frassanito, M. Saalfrank, A.C. Mota, G. Blatter, V.N. Zavaritsky, T.W. Li, and P.H. Kes, “Lower critical field H ci and barriers for vortex entry in Bi2Sr2CaCu2O8+δ crystals,” Phys. Rev. Lett., 81, 3231 (1998).

    Article  ADS  Google Scholar 

  258. S.L. Lee, P. Zimmermann, H. Keller, M. Warden, I.M. Savic, R. Schauwecker, D. Zech, R. Cubitt, E.M. Forgan, P.H. Kes, T.W. Li, A.A. Menovsky, and Z. Tarnawski, “Evidence for flux-lattice melting and a dimensional crossover in single-crystal Bi2.15Sr1.85CaCu2O8+δ from muon spin rotation studies,” Phys. Rev. Lett., 71, 3862–3865 (1993).

    Article  ADS  Google Scholar 

  259. M. Weber, P. Birrer, F.N. Gygax, B. Hitti, E. Lippelt, H. Maletta, and A. Schenck, “Measurements of the London penetration depth in Bi-based high-T c compounds,” Hyp. Int., 63, 93 (1993).

    Article  ADS  Google Scholar 

  260. C. Bernhard, J.L. Tallon, T. Blasius, A. Golnik, and C. Neidermayer, “Anomalous peak in the superconducting condensate density of cuprate high-Tc superconductors at a unique doping state,” Phys. Rev. Lett., 86, 1614–1617 (2001).

    Article  ADS  Google Scholar 

  261. C. Panagopoulos, J.R. Cooper, and T. Xiang, “Systematic behavior of the inplane penetration depth in d-wave cuprates,” Phys. Rev. B, 57, 13422–13425 (1998).

    Article  ADS  Google Scholar 

  262. P. Zimmermann, H. Keller, S.I. Lee, I.M. Savic, M. Warden, D. Zech, R. Cubitt, E.M. Forgan, E. Kaldis, J. Karpinski, and C. Kruger, “Muon-spin-rotation studies of the temperature dependence of the magnetic penetration depth in the YBa2Cu3Ox family and related compounds,” Phys. Rev. B, 52, 541–552 (1995).

    Article  ADS  Google Scholar 

  263. J.Y.T. Wei, C.C. Tsuei, P.J.M. van Bentum, Z. Xiong, C.W. Chu, and M.K. Wu, “Quasiparticle tunneling spectra of the high-Tc mercury cuprates: Implications of the d-wave two-dimensional van Hove scenario,” Phys. Rev. B, 57, 3650–3662 (1998).

    Article  ADS  Google Scholar 

  264. L. Fäbrega, A. Calleja, A. Sin, S.P. nol, X. Obradors, J. Fontcuberta, and P.J.C. King, “Muon spin relaxation in Resubstituted HgA2Ca n−1CunO2n+2+x (A = Sr,Ba; n = 2,3) superconductors,” Phys. Rev. B, 60, 7579–7584 (1999).

    Article  ADS  Google Scholar 

  265. A. Fujimori, A. Ino, T. Yoshida, T. Mizokawa, M. Nakamura, C. Kim, Z.X. Shen, T. Kakeshita, H. Eisaki, and S. Uchida, “Fermi surface, pseudogap and superconducting gap in La2−x SrxCuO4,” Physica C, 341–348, 2067 (2000).

    Article  Google Scholar 

  266. C. Panagopoulos, B.D. Rainford, J.R. Cooper, W. Lo, J.L. Tallon, J.W. Loram, J. Betouras, Y.S. Wang, and C.W. Chu, “Effects of carrier concentration on the superfluid density of high-Tc cuprates,” Phys. Rev. B, 60, 14617–14620 (1999).

    Article  ADS  Google Scholar 

  267. P.G. Radaelli, D.G. Hinks, A.W. Mitchell, B.A. Hunter, J.L. Wagner, B. Dabrowski, K.G. Vandervoort, H.K. Viswanathan, and J.D. Jorgensen, “Structural and superconducting properties of La2−x SrxCuO4 as a function of Sr content,” Phys. Rev. B, 49, 4163–4175 (1994).

    Article  ADS  Google Scholar 

  268. V.J. Emery and S.A. Kivelson, “Importance of phase fluctuations in superconductors with small superfluid density,” Nature, 374, 434–437 (1995).

    Article  ADS  Google Scholar 

  269. L.M. Merchant, J. Ostrick, R.P.B. Jr., and R.C. Dynes, “Crossover from phase fluctuation to amplitude-dominated superconductivity: A model system,” Phys. Rev. B, 63, 134508–134514 (2001).

    Article  ADS  Google Scholar 

  270. A.J. Rimberg, T.R. Ho, C. Kurdak, J. Clarke, K.L. Campman, and A.C. Gossard, “Dissipation-driven superconductor-insulator transition in a two-dimensional Josephson-junction array,” Phys. Rev. Lett., 78, 2632–2635 (1997).

    Article  ADS  Google Scholar 

  271. A. Kapitulnik, N. Mason, S.A. Kivelson, and S. Chakravarty, “Effects of dissipation on quantum phase transitions,” Phys. Rev. B, 63, 125322–125333 (2001).

    Article  ADS  Google Scholar 

  272. N. Mason and A. Kapitulnik, “True superconductivity in a two-dimensional superconducting-insulating system,” Phys. Rev. B, 64, 60504–60508 (2001).

    Article  ADS  Google Scholar 

  273. E.W. Carlson, S.A. Kivelson, V.J. Emery, and E. Manousakis, “Classical phase fluctuations in high temperature superconductors,” Phys. Rev. Lett., 83, 612–615 (2000).

    Article  ADS  Google Scholar 

  274. B.I. Spivak and S.A. Kivelson, “Aharonov-Bohm oscillations with period hc/4e and negative magnetoresistance in dirty superconductors,” Phys. Rev. B, 45, 10490–10495 (1992), electron correlations could change this assumption.

    Article  Google Scholar 

  275. P.M. Chaikin and T.C. Lubensky, Principles of condensed matter physics (Cambridge) (1995).

    Google Scholar 

  276. E. Roddick and D. Stroud, “Effect of phase fluctuations on the low-temperature penetration depth of high-Tc superconductors,” Phys. Rev. Lett., 74, 1430–1433 (1995).

    Article  ADS  Google Scholar 

  277. M.W. Coffey, “Effect of superconductor phase fluctuations upon penetration depth,” Phys. Lett. A, 200, 195–200 (1995).

    Article  ADS  Google Scholar 

  278. S. Kamal, D.A. Bonn, N. Goldenfeld, P.J. Hirschfeld, R. Liang, and W.N. Hardy, “Penetration depth measurements of 3D XY critical behavior in YBa2Cu3O6.95 crystals,” Phys. Rev. Lett., 73, 1845–1848 (1994).

    Article  ADS  Google Scholar 

  279. S. Chakravarty, G. Ingold, S.A. Kivelson, and A. Luther, “Onset of global phase coherence in Josephson-junction arrays: a dissipative phase transition,” Phys. Rev. Lett., 56 (1986).

    Google Scholar 

  280. K.-H. Wagenblast, A.V. Otterlo, G. Schon, and G.T. Zimanyi, “Superconductor-insulator transition in a tunable dissipative environment,” Phys. Rev. Lett., 79 (1997).

    Google Scholar 

  281. S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, UK) (1999).

    Google Scholar 

  282. M.V. Feigel’man, A.I. Larkin, and M.A. Skvortsov, “Quantum superconductor-metal transition in a proximity array,” Phys. Rev. Lett., 86, 1869–1872 (2001).

    Article  ADS  Google Scholar 

  283. B.I. Spivak, A. Zyuzin, and M. Hruska, “Quantum superconductor-metal transition,” Phys. Rev. B, 64, 132502–132505 (2001).

    Article  ADS  Google Scholar 

  284. Y. Oreg and E. Demler, “Fermions and bosons in superconducting amorphous wires,” cond-mat/0106645 (2001).

    Google Scholar 

  285. L. Ozyuzer, J.F. Zasadzinski, and N. Miyakawa, “Tunneling spectra and superconducting gap in Bi2Sr2CaCu2O8+δ and Tl2Ba2CuO6+δ ,” Int. J. Mod. Phys. B, 13, 3721–3724 (1999).

    Article  ADS  Google Scholar 

  286. S. Doniach and M. Inui, “Long-range Coulomb interactions and the onset of superconductivity in the high-Tc materials,” Phys. Rev. B, 41, 6668–6678 (1990).

    Article  ADS  Google Scholar 

  287. J.M. Harris, P.J. White, Z.-X. Shen, H. Ikeda, R. Yoshizaki, H. Eisaki, S. Uchida, W.D. Si, J.W. Xiong, Z.-X. Zhao, and D.S. Dessau, “Measurement of an anisotropic energy gap in single plane Bi2Sr2−x LaxCuO6+δ ,” Phys. Rev. Lett., 79, 143–146 (1997).

    Article  ADS  Google Scholar 

  288. T. Schneider and H. Keller, “Extreme type II superconductors. Universal properties and trends,” Physica, 207, 366–380 (1993).

    Google Scholar 

  289. F. a recent analysis of the doping dependence of ξ0 see Y. Ando and K. Segawa, “Magnetoresistance of untwinned YBa2Cu3Oy single crystals in a wide range of doping: anomalous hole-doping dependence of the coherence length,” Phys. Rev. Lett., 88, 167005 (2002).

    Article  ADS  Google Scholar 

  290. C.P.B. W.N. Hardy, D. A. Bonn, and R. Liang, “Magnetic field dependence of lambda in YBa2Cu3O6.95: results as a function of temperature and field orientation,” Phys. Rev. Lett., 83, 3277–3280 (1999).

    Article  ADS  Google Scholar 

  291. X.-G. Wen and P.A. Lee, “Theory of quasiparticles in the underdoped high-Tc superconducting state,” Phys. Rev. Lett., 80, 2193–2196 (1998).

    Article  ADS  Google Scholar 

  292. A.J. Millis, S.M. Girvin, L.B. Ioffe, and A.I. Larkin, “Anomalous charge dynamics in the superconducting state of underdoped cuprates,” Jour. Phys. Chem. Solids, 59, 1742–1744 (1998).

    Article  ADS  Google Scholar 

  293. L. Benfatto, S. Caprara, C. Castellani, A. Paramekanti, and M. Randeria, “Phase fluctuations, dissipation, and superfluid stiffness in d-wave superconductors,” Phys. Rev. B, 63, 174513–174521 (2001).

    Article  ADS  Google Scholar 

  294. G.T. Zimanyi, S.A. Kivelson, and A. Luther, “Superconductivity from predominantly repulsive interactions in quasi one-dimensional systems,” Phys. Rev. Lett., 60, 2089–2092 (1988).

    Article  ADS  Google Scholar 

  295. S.A. Kivelson and G.T. Zimanyi, “High temperature superconductors, RVB, and conducting polymers,” Molec. Cryst and Liq. Cryst, 160, 457–481 (1988).

    Google Scholar 

  296. A.M. Finkel’stein and S.A. Brazovsky, “Interchain coupling in linear conductors,” J. Phys. C, 14, 847–857 (1981).

    Article  ADS  Google Scholar 

  297. S.A. Brazovsky and A.M. Finkel’stein, “The influence of phonons on the optical properties and conductivity of quasi-one-dimensional metals,” Solid State Comm., 38, 745 (1981).

    Article  ADS  Google Scholar 

  298. S.A. Kivelson and M.I. Salkola, “Metal-non-metal transition in polyacetylene,” Synth. Met, 44, 281–291 (1991).

    Article  Google Scholar 

  299. G.G. Batrouni, R.T. Scalettar, G.T. Zimanyi, and A.P. Kampf, “Supersolids in the Bose-Hubbard Hamiltonian,” Phys. Rev. Lett., 74, 2527–2530 (1995), see also [502].

    Article  ADS  Google Scholar 

  300. M.P.A. Fisher, P.B. Weichman, G. Grinstein, and D.S. Fisher, “Boson localization and the superfluid-insulator transition,” Phys. Rev. B, 40, 546–570 (1989).

    Article  ADS  Google Scholar 

  301. C. Nayak and K. Shtengel, “Microscopic models of two-dimensional magnets with fractionalized excitations,” Phys. Rev. B, 64, 064422–064428 (2001).

    Article  ADS  Google Scholar 

  302. R. Coldea, D.A. Tennant, A.M. Tsvelik, and Z. Tylczynski, “Experimental realization of a 2D fractional quantum spin liquid,” Phys. Rev. Lett., 86, 1335–1338 (2001).

    Article  ADS  Google Scholar 

  303. S. Chakravarty, “Magnetic properties of La2CuO4,” (Addison-Wesley, Redwood City, CA, USA) (1990).

    Google Scholar 

  304. A.E. Sikkema, I. Affleck, and S.R. White, “Spin gap in a doped Kondo chain,” Phys. Rev. Lett., 79, 929–932 (1997).

    Article  ADS  Google Scholar 

  305. O. Zachar, V.J. Emery, and S.A. Kivelson, “Exact results for a ID Kondo lattice from bosonization,” Phys. Rev. Lett, 77, 1342–1345 (1996).

    Article  ADS  Google Scholar 

  306. O. Zachar, “Staggered liquid phases of the one-dimensional Kondo-Heisenberg lattice model,” Phys. Rev. B, 63, 205104–205113 (2001).

    Article  ADS  Google Scholar 

  307. D.J. Scalapino and S.R. White, “Numerical results for the Hubbard model: implications for the high-T c pairing mechanism,” Foundations of Physics, 31, 27–39 (2001).

    Article  Google Scholar 

  308. F.D.M. Haldane, “Continuum dynamics of the 1-D Heisenberg antiferromagnet: identification with the 0(3) nonlinear sigma model,” Phys. Lett. A, 93, 464–468 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  309. S. Chakravarty, “Dimensional crossover in quantum antiferromagnets,” Phys. Rev. Lett, 77, 4446–4449 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  310. S.R. White, R.M. Noack, and D.J. Scalapino, “Resonating valence bond theory of coupled Heisenberg chains,” Phys. Rev. Lett, 73, 886–889 (1994).

    Article  ADS  Google Scholar 

  311. D.J. Scalapino and S.A. Trugman, “Local antiferromagnetic correlations and {ze441-1} pairing,” Philos. Mag. B, 74, 607–610 (1996).

    Article  Google Scholar 

  312. M. Havilio and A. Auerbach, “Superconductivity and quantum spin disorder in cuprates,” Phys. Rev. Lett, 83, 4848–4851 (1999).

    Article  ADS  Google Scholar 

  313. M. Havilio and A. Auerbach, “Correlations in doped antiferromagnets,” Phys. Rev. B, 62, 324–336 (2000).

    Article  ADS  Google Scholar 

  314. S.R. White and D.J. Scalapino, “Superconductivity in ladders and coupled planes,” Phys. Rev. B, 45, 5744–5747 (1992).

    Article  ADS  Google Scholar 

  315. D. Poilblanc, “Internal structure of the singlet {ze441-1} hole pair in an antiferromagnet,” Phys. Rev. B, 495, 1477–1479 (1993).

    Google Scholar 

  316. Y. Fang, A.E. Ruckenstein, E. Dagotto, and S. Schmitt-Rink, “Holes in the infinite-U Hubbard model: instability of the Nagaoka state,” Phys. Rev. B, 40, 7406–7409 (1989), see also [503].

    Article  ADS  Google Scholar 

  317. D. Rokhsar, “Quadratic quantum antiferromagnets in the fermionic large-N limit,” Phys. Rev. B, 42, 2526–2531 (1990).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  318. CM. Varma and A. Zawadowskii, “Scaling in an interacting two-component (valence-fluctuation) electron gas,” Phys. Rev. B, 32, 7399–7407 (1985).

    Article  ADS  Google Scholar 

  319. H.-H. Lin, L. Balents, and M.RA. Fisher, “N-chain Hubbard model in weak coupling,” Phys. Rev. B, 56, 6569–6593 (1997).

    Article  ADS  Google Scholar 

  320. S.R. White and D.J. Scalapino, “Density matrix renormalization group study of the striped phase in the 2D t-J model,” Phys. Rev. Lett, 80, 1272–1275 (1998).

    Article  ADS  Google Scholar 

  321. S.R. White and D.J. Scalapino, “Energetics of domain walls in the 2D t-J model,” Phys. Rev. Lett, 81, 3227–3230 (1998).

    Article  ADS  Google Scholar 

  322. S. Hellberg and E. Manousakis, “Phase separation at all interaction strengths in the t-J model,” Phys. Rev. Lett, 78, 4609–4612 (1997).

    Article  ADS  Google Scholar 

  323. D. Poilblanc, O. Chiappa, J. Riera, S.R. White, and D.J. Scalapino, “Evolution of the spin gap upon doping a 2-leg ladder,” Phys. Rev. B, 62, R14633–R14636 (2000).

    Article  ADS  Google Scholar 

  324. S.R. White and D.J. Scalapino, “Competition between stripes and pairing in a t-t′-J model,” Phys. Rev. B, 60, R753–R756 (1999).

    Article  ADS  Google Scholar 

  325. S.C. Hellberg and E. Manousakis, “Stripes and the t-J model,” Phys. Rev. Lett., 83, 132 (1999), see also Refs. 328,329.

    Article  ADS  Google Scholar 

  326. S.R. White and D.J. Scalapino, “Comment on “Stripes and the t-J Model”,” Phys. Rev. Lett., 84, 3021 (2000).

    Article  ADS  Google Scholar 

  327. S.C. Hellberg and E. Manousakis, “Reply: Hellberg and Manousakis,” Phys. Rev. Lett., 84, 3022 (2000).

    Article  ADS  Google Scholar 

  328. E. Arrigoni, A.P. Harju, W. Hanke, B. Brendel, and S.A. Kivelson, “Stripes and superconducting pairing in the t-J model with Coulomb interactions,” Phys. Rev. B, 65, 134503–134507 (2002).

    Article  ADS  Google Scholar 

  329. S.R. White and D.J. Scalapino, “Phase separation and stripe formation in the two-dimensional t-J model: A comparison of numerical results,” Phys. Rev. B 61, 6320–6326 (2000).

    Article  ADS  Google Scholar 

  330. E. Daggoto, “Correlated electrons in high-temperature superconductors,” Rev. Mod. Phys., 66, 763–840 (1994).

    Article  ADS  Google Scholar 

  331. S.C. Hellberg and E. Manousakis, “Green’s-function Monte Carlo for lattice fermions: Application to the t-J model,” Phys. Rev. B, 61, 11787–11806 (2000).

    Article  ADS  Google Scholar 

  332. S. Sorella, “Green function Monte Carlo with stochastic reconfiguration,” Phys. Rev. Lett, 80, 4558–4561 (1998).

    Article  ADS  Google Scholar 

  333. Y.C. Chen and T.K. Lee, “t-J model studied by the power Lanczos method,” Phys. Rev. B, 51, 6723–6726 (1995).

    Article  ADS  Google Scholar 

  334. S.R. White, “Density-matrix algorithms for quantum renormalization groups,” Phys. Rev. B, 48, 10345–10356 (1993).

    Article  ADS  Google Scholar 

  335. S.R. White, “Spin gaps in a frustrated Heisenberg model for CaV4O9,” Phys. Rev. Lett, 77, 3633–3636 (1996).

    Article  ADS  Google Scholar 

  336. E. Dagotto and T.M. Rice, “Surprises on the way from one-to two-dimensional quantum magnets: the ladder materials,” Science, 271, 618–623 (1996).

    Article  ADS  Google Scholar 

  337. E. Dagotto, “Experiments on ladders reveal a complex interplay between a spin-gapped normal state and superconductivity,” Rep. Prog. Phys., 62, 1525–1571 (1999).

    Article  ADS  Google Scholar 

  338. E. Lieb and F.Y. Wu, “Absence of Mott transition in an exact solution of the short-range, one-band model in one dimension,” Phys. Rev. Lett, 20, 1445–1448 (1968).

    Article  ADS  Google Scholar 

  339. H.J. Schulz, in “Proceedings of the 9th Jerusalem Winter School for Theoretical Physics,” edited by V. J. Emery (World Scientific, New York) (1993).

    Google Scholar 

  340. B. Frischmuth, B. Ammon, and M. Troyer, “Susceptibility and low-temperature thermodynamics of spin-1/2 Heisenberg ladders,” Phys. Rev. B, 54, R3714–R3717 (1996).

    Article  ADS  Google Scholar 

  341. R.M. Noack, S.R. White, and D.J. Scalapino, “Correlations in a two-chain Hubbard model,” Phys. Rev. Lett, 73, 882–885 (1994).

    Article  ADS  Google Scholar 

  342. R.M. Noack, D.J. Scalapino, and S.R. White, “The ground state of the two-leg Hubbard ladder. A density-matrix renormalization group study,” Physica C, 270, 281–296 (1996).

    Article  ADS  Google Scholar 

  343. E. Dagotto, J. Riera, and D. Scalapino, “Superconductivity in ladders and coupled planes,” Phys. Rev. B, 45, 5744–5747 (1992).

    Article  ADS  Google Scholar 

  344. T. Kimura, K. Kuroki, and H. Aoki, “Pairing correlation in the three-leg Hubbard ladder-renormalization group and quantum Monte Carlo studies,” J. Phys. Soc. Jpn., 67, 1377–1390 (1998).

    Article  ADS  Google Scholar 

  345. E. Jeckelmann, D.J. Scalapino, and S.R. White, “Comparison of different ladder models,” Phys. Rev. B, 58, 9492–9497 s (1998).

    Article  ADS  Google Scholar 

  346. S. Daul, D.J. Scalapino, and S.R. White, “Pairing correlations on t-U-J ladders,” Phys. Rev. Lett, 84, 4188–4191 (2000).

    Article  ADS  Google Scholar 

  347. S.R. White and D.J. Scalapino, “Ground-state properties of the doped three-leg t-J ladder,” Phys. Rev. B, 57, 3031–3037 (1998).

    Article  ADS  Google Scholar 

  348. T.M. Rice, S. Haas, M. Sigrist, and F.-C. Zhang, “Lightly doped t-J three-leg ladders: An analog for the underdoped cuprates,” Phys. Rev. B, 56, 14655–14667 (1997).

    Article  ADS  Google Scholar 

  349. W.R. White and D.J. Scalapino, “Ground states of the doped four-leg t-J ladder,” Phys. Rev. B, 55, R14701–R14704 (1997).

    Article  ADS  Google Scholar 

  350. D.J. Scalapino, private communication.

    Google Scholar 

  351. M. Ogata, M.U. Luchini, S. Sorella, and F.F. Assaad, “Phase diagram of the one-dimensional t-J model,” Phys. Rev. Lett, 66, 2388–2391 (1991).

    Article  ADS  Google Scholar 

  352. OS. Hellberg and E.J. Meie, “Luttinger-liquid instability in the one-dimensional t-J model,” Phys. Rev. B, 48, 646–649 (1993).

    Article  ADS  Google Scholar 

  353. M. Troyer, H. Tsunetsugu, and T.M. Rice, “Properties of lightly doped t-J two-leg ladders,” Phys. Rev. B, 53, 251–267 (1996).

    Article  ADS  Google Scholar 

  354. OA. Hayward and D. Poilblanc, “Luttinger-liquid behavior and superconducting correlations in t-J ladders,” Phys. Rev. B, 53, 11721–11728 (1996).

    Article  ADS  Google Scholar 

  355. G. Sierra, M.A. Martin-Delgado, J. Dukelsky, S.R. White, and D.J. Scalapino, “Dimer-hole-RVB state of the two-leg t-J ladder: A recurrent variational ansatz,” Phys. Rev. B, 57, 11666–11673 (1998).

    Article  ADS  Google Scholar 

  356. S. Rommer, S.R. White, and D.J. Scalapino, “Phase separation in t-J ladders,” Phys. Rev. B, 61, 13424–13430 (2000).

    Article  ADS  Google Scholar 

  357. S.R. White, I. Affleck, and D.J. Scalapino, “Priedel oscillations and charge density waves in chains and ladders,” Phys. Rev. B, 65, 165122–165134 (2002).

    Article  ADS  Google Scholar 

  358. S.A. Kivelson and V.J. Emery, “Strongly Correlated Electronic Materials: The Los Alamos Symposium 1993,” (Addison-Wesley, Redwood City, CA, USA) (1994).

    Google Scholar 

  359. A.C. Cosentini, M. Capone, L. Guidoni, and G.B. Bachelet, “Phase separation in the two-dimensional Hubbard model: A fixed-node quantum Monte Carlo study,” Phys. Rev. B, 58, R14685–R14688 (1998).

    Article  ADS  Google Scholar 

  360. F. Becca, M. Capone, and S. Sorella, “Spatially homogeneous ground state of the two-dimensional Hubbard model,” Phys. Rev. B, 62, 12700–12706 (2001).

    Article  ADS  Google Scholar 

  361. S. Hellberg and E. Manousakis, “2-Dimensional t-J Model at Low Electron Density,” Phys. Rev. B, 52, 4639–4642 (1995).

    Article  ADS  Google Scholar 

  362. V.J. Emery, S.A. Kivelson, and H.Q. Lin, “Phase separation in the t-J model,” Phys. Rev. Lett, 64, 475–478 (1990).

    Article  ADS  Google Scholar 

  363. S.A. Kivelson, V.J. Emery, and H.Q. Lin, “Doped antiferromagnets in the weak-hopping limit,” Phys. Rev. B, 42, 6523–6530 (1990).

    Article  ADS  Google Scholar 

  364. E. Eisenberg, R. Berkovits, D.A. Huse, and B.L. Altshuler, “The breakdown of the Nagaoka phase in the 2D t-J model,” Phys. Rev. B, 65, 134437–134443 (2002).

    Article  ADS  Google Scholar 

  365. W.O. Putikka, M.U. Luchini, and T.M. Rice, “Aspects of the phase diagram of the two-dimensional t-J model,” Phys. Rev. Lett, 68, 538–541 (1992).

    Article  ADS  Google Scholar 

  366. D. Poilblanc, “Phase diagram of the two-dimensional t-J model at low doping,” Phys. Rev. B, 52, 9201–9204 (1995).

    Article  ADS  Google Scholar 

  367. M. Calandra, F. Becca, and S. Sorella, “Charge fluctuations close to phase separation in the two-dimensional t-J model,” Phys. Rev. Lett, 81, 5185–5188 (1998).

    Article  ADS  Google Scholar 

  368. H. Yokoyama and M. Ogata, “Phase diagram and pairing symmetry of the two-dimensional t-J model by a variation theory,” J. Phys. Soc. Japan, 65, 3615–3629 (1996).

    Article  ADS  Google Scholar 

  369. C.T. Shih, Y.C. Chen, and T.K. Lee, “Phase separation of the two-dimensional t-J model,” Phys. Rev. B, 57, 627–631 (1998).

    Article  ADS  Google Scholar 

  370. C.S. Shin, Y.C. Chen, and T.K. Lee, “Revisit phase separation of the two-dimensional t — J model by the Power-Lanczos method,” cond-mat/0104067 (2001).

    Google Scholar 

  371. M. Khono, “Ground-state properties of the two-dimensional t-J model,” Phys. Rev. B, 55, 1435–1441 (1997).

    Article  ADS  Google Scholar 

  372. F. Becca, L. Capriotti, and S. Sorella, “Stripes and spin incommensurabilities are favored by lattice anisotropics,” Phys. Rev. Lett, 87, 167005–167008 (2001).

    Article  ADS  Google Scholar 

  373. S.R. White and D.J. Scalapino, “Why do stripes form in doped antiferromagnets and what is their relationship to superconductivity?” cond-mat/0006071 (2000).

    Google Scholar 

  374. C. Nayak and F. Wilczek, “Possible electronic structure of domain walls in Mott insulators,” Int. J. Mod. Phys. B, 10, 2125–2136 (1996).

    Article  ADS  Google Scholar 

  375. J. Zaanen and O. Gunnarsson, “Charged magnetic domain lines and the magnetism of high-T c oxides,” Phys. Rev. B, 40, 7391–7394 (1989).

    Article  ADS  Google Scholar 

  376. D. Poilblanc and T.M. Rice, “Charged solitons in the Hartree-Fock approximation to the large-U Hubbard model,” Phys. Rev. B, 39, 9749–9752 (1989).

    Article  ADS  Google Scholar 

  377. H.J. Schulz, “Domain walls in a doped antiferromagnet,” J. de Physique, 50, 2833–2849 (1989).

    Article  Google Scholar 

  378. K. Machida, “Magnetism in La2Cu04 based compounds,” Physica C, 158, 192–196 (1989).

    Article  ADS  Google Scholar 

  379. O. Zachar, “Stripes: Why hole rich lines are antiphase domain walls?” cond-mat/0001217 (2000).

    Google Scholar 

  380. W.V. Liu and E. Fradkin, “Antiferromagnetic spin ladders effectively coupled by one-dimensional electron liquids,” Phys. Rev. Lett., 86, 1865–1868 (2001).

    Article  ADS  Google Scholar 

  381. A.L. Chernyshev, S.R. White, and A.H. Castro Neto, “Charge stripe in an antiferromagnet: Id band of composite excitations,” cond-mat/0111474 (2001), see also Ref. 411.

    Google Scholar 

  382. A. Moreo, “Pairing correlations in the two-dimensional Hubbard model,” Phys. Rev. B, 45, 5059–5061 (1992).

    Article  ADS  Google Scholar 

  383. S.-C. Zhang, J. Carlson, and J.E. Gubernatis, “Constrained path Monte Carlo method for fermion ground states,” Phys. Rev. B, 55, 7464–7477 (1997).

    Article  ADS  Google Scholar 

  384. E. Dagotto and J. Riera, “Indications of {ze444-1} superconductivity in the two dimensional t-J model,” Phys. Rev. Lett, 70, 682–685 (1993).

    Article  ADS  Google Scholar 

  385. E. Dagotto, A. Moreo, F. Ortolani, D. Poilblanc, and J. Riera, “Static and dynamical properties of doped Hubbard clusters,” Phys. Rev. B, 45, 10741–10760 (1992).

    Article  ADS  Google Scholar 

  386. M. Calandra and S. Sorella, “From antiferromagnetism to d-wave superconductivity in the two-dimensional t-J model,” Phys. Rev. B, 61, R11894–R11897 (2000).

    Article  ADS  Google Scholar 

  387. S. Sorella, G.B. Martins, F. Becca, C. Gazza, L. Capriotti, A. Parola, and E. Dagotto, “Superconductivity in the two-dimensional t-J model,” cond-mat/0110460 (2001).

    Google Scholar 

  388. M. Boninsegni and E. Manousakis, “Two-hole d-wave binding in the physical region of the t-J model: A Green’s-function Monte Carlo study,” Phys. Rev. B, 47, 11897–11904 (1993).

    Article  ADS  Google Scholar 

  389. T. Tohyama, C.G. C.T. Shih, Y. C. Chen, T. K. Lee, S. Maekawa, and E. Dagotto, “Stripe stability in the extended t-J model on planes and four-leg ladders,” Phys. Rev. B, 59, R11649–R11652 (1999).

    Article  ADS  Google Scholar 

  390. E.L. Nagaev, Physics of Magnetic Semiconductors (Mir, Moscow) (1983).

    Google Scholar 

  391. A. Auerbach and B.E. Larson, “Doped antiferromagnet: The instability of homogeneous magnetic phases,” Phys. Rev. B, 43, 7800–7809 (1991).

    Article  ADS  Google Scholar 

  392. A. Auerbach and B.E. Larson, “Small-polaron theory of doped antiferromagnets,” Phys. Rev. Lett, 66, 2262–2265 (1990).

    Article  ADS  Google Scholar 

  393. A. Auerbach, “Spin tunneling, Berry phases, and doped antiferromagnets,” Phys. Rev. B, 48, 3287–3289 (1993).

    Article  ADS  Google Scholar 

  394. E.W. Carlson, S.A. Kivelson, Z. Nussinov, and V.J. Emery, “Doped antiferromagnets in high dimension,” Phys. Rev. B, 57, 14704–14721 (1998).

    Article  ADS  Google Scholar 

  395. P.B. Visscher, “Phase separation instability in the Hubbard model,” Phys. Rev. B, 10, 943–945 (1974).

    Article  ADS  Google Scholar 

  396. L.B. Ioffe and A.I. Larkin, “Two-dimensional Hubbard model with strong electron repulsion,” Phys. Rev. B, 37, 5730–5737 (1988).

    Article  ADS  Google Scholar 

  397. L. Pryadko, D. Hone, and S.A. Kivelson, “Instability of charge ordered states in doped antiferromagnets,” Phys. Rev. Lett, 80, 5651–5654 (1998).

    Article  ADS  Google Scholar 

  398. J.K. Freericks, E.H. Lieb, and D. Ueltschi, “Segregation in the Falicov-Kimball model,” math-ph/0107003 (2001).

    Google Scholar 

  399. E.L. Nagaev, “Lanthanum manganites and other giant-magnetoresistance magnetic conductors,” Usp. Fiz. Nauk., 166, 833 (1996).

    Article  Google Scholar 

  400. S. Trugman, “Interaction of holes in a Hubbard antiferromagnet and high-temperature superconductivity,” Phys. Rev. B, 37, 1597–1603 (1988).

    Article  ADS  Google Scholar 

  401. A.H. Castro Neto, “Landau theory of phase separation in cuprates,” Phys. Rev. B, 51, 3254–3256 (1995).

    Article  ADS  Google Scholar 

  402. M. Seul and D. Andelman, “Domain shapes and patterns — the phenomenology of modulated phases,” Science, 267, 476–483 (1995).

    Article  ADS  Google Scholar 

  403. B.P. Stojkovic, Z.G. Yu, A.R. Bishop, A.H. Castro Neto, and N. Gronbech-Jensen, “Charge ordering and long-range interactions in layered transition metal oxides,” Phys. Rev. Lett, 82, 4679–4682 (1999).

    Article  ADS  Google Scholar 

  404. L.P. Pryadko, S. A. K. V.J. Emery, Y.B. Bazaliy, and E.A. Dernier, “Topological doping and the stability of stripe phases,” Phys. Rev. B, 60, 7541–7557 (1999).

    Article  ADS  Google Scholar 

  405. A.L. Chernyshev, A.H. Castro Neto, and A.R. Bishop, “Metallic stripe in two dimensions: stability and spin-charge separation,” Phys. Rev. Lett, 84, 4922–4925 (2000).

    Article  ADS  Google Scholar 

  406. S.A. Kivelson and V.J. Emery, “Topological doping of correlated insulators,” Synthetic Metals, 80, 151–158 (1996).

    Article  Google Scholar 

  407. J. Zaanen and Z. Nussinov, “Stripes and nodal fermions as two sides of the same coin,” cond-mat/0006193 (2000).

    Google Scholar 

  408. J. Han, Q.H. Wang, and D.H. Lee, “Antiferromagnetism, stripes, and superconductivity in the t-J model with Coulomb interaction,” Int. J. Mod. Phys. B, 15, 1117–1126 (2001).

    ADS  Google Scholar 

  409. A.H. Castro Neto, “Luttinger stripes in antiferromagnets,” Z. Phys. B, 103, 185–192 (1997).

    Article  ADS  Google Scholar 

  410. J. Zaanen and P.B. Littlewood, “Freezing Electronic Correlations by Polaronic Instabilities in Doped La2NiO,” Phys. Rev. B, 50, 7222–7225 (1994).

    Article  ADS  Google Scholar 

  411. H.J. Schulz, “Incommensurate antiferromagnetism in the two-dimensional Hubbard model,” Phys. Rev. Lett, 64, 1445–1448 (1990).

    Article  ADS  Google Scholar 

  412. A.I. Larkin, “Effect of inhomogeneities on the structure of the mixed state of superconductors,” Sov. Phys. JETP, 31, 784–786 (1970).

    ADS  Google Scholar 

  413. V.J. Emery and S.A. Kivelson, “Charge inhomogeneity and high temperature superconductivity,” J. Phys. Chem. Sol., 61, 467–471 (2000).

    Article  ADS  Google Scholar 

  414. N. Ichikawa, S. Uchida, J.M. Tranquada, T. Niemoller, P. M. Gehring, S. H. Lee, and J. R. Schneider, “Local magnetic order vs superconductivity in a layered cuprate,” Phys. Rev. Lett, 85, 1738–1741 (2000).

    Article  ADS  Google Scholar 

  415. J. Schmalian and P.G. Wolynes, “Stripe glasses: Self-generated randomness in a uniformly frustrated system,” Phys. Rev. Lett, 85, 836–839 (2000).

    Article  ADS  Google Scholar 

  416. J. Burgy, M. Mayr, V. Martin-Mayor, A. Moreo, and E. Dagotto, “Colossal effects in transition metal oxides caused by intrinsic inhomogeneities,” Phys. Rev. Lett, 87, 277202–277205 (2001).

    Article  ADS  Google Scholar 

  417. U. Low, V.J. Emery, K. Fabricius, and S.A. Kivelson, “Study of an Ising model with competing long-and short-range interactions,” Phys. Rev. Lett, 72, 1918–1921 (1994).

    Article  ADS  Google Scholar 

  418. M. Grousson, G. Tarjus, and P. Viot, “Monte Carlo study of the three-dimensional Coulomb frustrated Ising ferromagnet,” Phys. Rev. E, 64, 036109–036117 (2001).

    Article  ADS  Google Scholar 

  419. L. Chayes, V.J. Emery, S.A. Kivelson, Z. Nussinov, and G. Tarjus, “Avoided critical behavior in a uniformly frustrated system,” Physica A, 225, 129–153 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  420. Z. Nussinov, J. Rudnick, S.A. Kivelson, and L.N. Chayes, “Avoided critical behavior in O(n) systems,” Phys. Rev. Lett, 83, 472–475 (1999).

    Article  ADS  Google Scholar 

  421. D.B. Tanner and T. Timusk, “Optical properties of high-temperature superconductors,” in “Physical Properties of High Temperature Superconductors Vol. Ill,” edited by D. M. Ginsberg (World Scientific, Singapore) (1992).

    Google Scholar 

  422. N.P. Ong, “Transport properties of high T c cuprates,” in “Phyral Properties of High Temperature Superconductors Vol. II,” edited by D. M. Ginsberg (World Scientific, Singapore) (1992).

    Google Scholar 

  423. K. Krishana, J.M. Harris, and N.P. Ong, “Quasiparticle mean free path in YBa2Cu3O7 measured by the thermal Hall conductivity,” Phys. Rev. Lett, 75, 3529–3532 (1995).

    Article  ADS  Google Scholar 

  424. K.M. Lang, V. Madhavan, J.E. Hoffman, E.W. Hudson, H. Eisaki, S. Uchida, and J. C. Davis, “Imaging the granular structure of high-T c superconductivity in underdoped Bi2Sr2CaCu2O8+delta ,” Nature, 415, 412–416 (2002).

    Article  ADS  Google Scholar 

  425. T.R. Thurston, R.J. Birgeneau, M.A. Kastner, N.W. Preyer, G. Shirane, Y. Fujii, K. Yamada, Y. Endoh, K. Kakurai, M. Matsuda, Y. Hidaka, and T. Murakami, “Neutron scattering study of the magnetic excitations in metallic and superconducting La2−x SrxCuO4−y ,” Phys. Rev. B, 40, 4585–4595 (1989).

    Article  ADS  Google Scholar 

  426. S.-W. Cheong, G. Aeppli, T.E. Mason, H. Mook, S.M. Hayden, P.C. Canfield, Z. Fisk, K.N. Clausen, and J.L. Martinez, “Incommensurate magnetic fluctuations in La2−x SrxCu04,” Phys. Rev. Lett, 67, 1791–1794 (1991).

    Article  ADS  Google Scholar 

  427. J.M. Tranquada, B.J. Sternlieb, J. D. Axe, Y. Nakamura, and S. Uchida, “Evidence for stripe correlations of spins and holes in copper oxide superconductors,” Nature, 375, 561–563 (1995).

    Article  ADS  Google Scholar 

  428. J.M. Tranquada, D.J. Buttrey, V. Sachan, and J.E. Lorenzo, “Simultaneous ordering of holes and spins in La2NiO4.125,” Phys. Rev. Lett., 73, 1003–1006 (1994).

    Article  ADS  Google Scholar 

  429. A. Lanzara, P.V. Bogdanov, X.J. Zhou, S.A. Kellar, D.L. Feng, E.D. Lu, T. Yoshida, H. Eisaki, A. Fujimori, K. Kishio, J.-I. Shimoyama, T. Nöda, S. Uchida, Z. Hussain, and Z.-X. Shen, “Evidence for ubiquitous strong electron-phonon coupling in high-temperature superconductors,” Nature, 412, 510–514 (2001).

    Article  ADS  Google Scholar 

  430. L.P. Gor’kov and A.V. Sokol, “On the problem of the phase diagram of new superconductors,” J. Physique, 50, 2823–2832 (1989).

    Article  Google Scholar 

  431. A.J. Heeger, S.A. Kivelson, J.R. Schrieffer, and W. Su, “Solitons in conducting polymers,” Rev. Mod. Phys., 60, 781–850 (1988).

    Article  ADS  Google Scholar 

  432. D.K. Campbell, A.R. Bishop, and K. Fesser, “Polarons in quasi-one-dimensional systems,” Phys. Rev. B, 26, 6862–6874 (1982).

    Article  ADS  Google Scholar 

  433. L.B. Ioffe and A. Larkin, “Superconductivity in the liquid-dimer valence-bond state,” Phys. Rev. B, 40, 6941–6947 (1989).

    Article  ADS  Google Scholar 

  434. M. Marder, N. Papanicolaou, and G.C. Psaltakis, “Phase separation in a t-J model,” Phys. Rev. B, 41, 6920–32 (1990).

    Article  ADS  Google Scholar 

  435. M. Vojta and S. Sachdev, “Charge order, superconductivity and a global phase diagram of doped antiferromagnets,” Phys. Rev. Lett., 83, 3916–3919 (1999).

    Article  ADS  Google Scholar 

  436. S. Sachdev and S.-C. Zhang, “Tuning order in cuprate superconductors,” Science, 295, 452 (2002).

    Article  Google Scholar 

  437. D.I. Khomskii and K.I. Kugel, “Why stripes? Spontaneous formation of inhomogeneous structures due to elastic interactions,” Europhys. Lett, 55, 208–213 (2001).

    Article  ADS  Google Scholar 

  438. A.A. Koulakov, M.M. Fogler, and B.I. Shklovskii, “Charge density wave in two-dimensional electron liquid in weak magnetic field,” Phys. Rev. Lett., 76, 499–502 (1996).

    Article  ADS  Google Scholar 

  439. R. Moessner and T.J. Chalker, “Exact results for interacting electrons in high Landau levels,” Phys. Rev. B, 54, 5006–5015 (1996).

    Article  ADS  Google Scholar 

  440. M.P. Lilly, K.B. Cooper, J.P. Eisenstein, L.N. Pfeiffer, and K.W. West, “Evidence for an anisotropic state of two-dimensional electrons in high Landau levels,” Phys. Rev. Lett, 82, 394–397 (1999).

    Article  ADS  Google Scholar 

  441. B. Spivak, “Title: Phase separation in the two-dimensional electron liquid in MOSFETs,” cond-mat/0205127 (2002).

    Google Scholar 

  442. S.A. Kivelson, “Making high-T c higher: a theoretical proposal,” Physica B, 61–67, 61–67 (2002).

    Article  Google Scholar 

  443. T.H. Geballe and B.Y. Moyzhes, “Qualitative understanding of the highest T c cuprates,” Physica C, 342, 1821–1824 (2000).

    Article  ADS  Google Scholar 

  444. M. Fujita, H. Goka, K. Yamada, and M. Matsuda, “Competition between charge/spin-density-wave orders and superconductivity in La1.875Ba0.125−x SrxCuO4,” Phys. Rev. Lett, 88, 167008–167011 (2002).

    Article  ADS  Google Scholar 

  445. K. Yamada, C.H. Lee, K. Kurahashi, J. Wada, S. Wakimoto, S. Ueki, H. Kimura, Y. Endoh, S. Hosoya, G. Shirane, R.J. Birgeneau, M. Greven, M.A. Kastner, and Y. J. Kim, “Doping dependence of the spatially modulated dynamical spin correlations and the superconducting-transition temperature in La2−x SrxCuO4,” Phys. Rev. B, 57, 6165–6172 (1998).

    Article  ADS  Google Scholar 

  446. Y.S. Lee, R.J. Birgeneau, M.A. Kastner, Y. Endoh, S. Wakimoto, K. Yamada, R.W. Erwin, S.-H. Lee, and G. Shirane, “Neutron-scattering study of spin-density wave order in the superconducting state of excess-oxygen-doped La2CuO4+y ,” Phys. Rev. B, 60, 3643–3654 (1999).

    Article  ADS  Google Scholar 

  447. B. Khaykovich, Y.S. Lee, R. Erwin, S.-H. Lee, S. Wakimoto, K.J. Thomas, M.A. Kastner, and R.J. Birgeneau, “Enhancement of long-range magnetic order by magnetic field in superconducting La2CuO4+y ,” cond-mat/0112505 (2001).

    Google Scholar 

  448. H. Kimura, K. Hirota, H. Matsushita, K. Yamada, Y. Endoh, S.-H. Lee, C.F. Majkrzak, R. Erwin, G. Shirane, M. Greven, Y.S. Lee, M.A. Kastner, and R. J. Birgeneau, “Neutron-scattering study of static antiferromagnetic correlations in La2−x SrxCu1−y ZnyO4,” Phys. Rev. B, 59, 6517–6523 (1999).

    Article  ADS  Google Scholar 

  449. M. Fujita, K. Yamada, H. Hiraka, P.M. Gehring, S.H. Lee, S. Wakimoto, and G. Shirane, “Static magnetic correlations near the insulating-superconducting phase boundary in La2−x Sra;CuO4,” Phys. Rev. B, 65, 064505–064511 (2002).

    Article  ADS  Google Scholar 

  450. P. Dai, H.A. Mook, R.D. Hunt, and F. Dogan, “Evolution of the resonance and incommensurate spin fluctuations in superconducting YBa2Cu3O6+a ,” Phys. Rev. B, 63, 054525–054544 (2001).

    Article  ADS  Google Scholar 

  451. P. Bourges, Y. Sidis, H.F. Fong, L.P. Regnault, J. Bossy, A. Ivanov, and B. Keimer, “The spin excitation spectrum in superconducting YBa2Cu3O6.85,” Science, 288, 1234–1237 (2000).

    Article  ADS  Google Scholar 

  452. G. Aeppli, S. M. Hayden, P. Dai, H.A. Mook, R.D. Hunt, T.G. Perring, and F. Dogan, “The weights of various features in the magnetic spectra of cuprates,” Phys. Stat. Sol., 215, 519–522 (1999).

    Article  ADS  Google Scholar 

  453. H.A. Mook, P.C. Dai, F. Dogan, and R.D. Hunt, “One-dimensional nature of the magnetic fluctuations in YBa2Cu3O6,” Nature, 404, 729–731 (2000).

    Article  ADS  Google Scholar 

  454. H.A. Mook and B.C. Chakoumakos, “Incommensurate fluctuations in Bi2Sr2CaCu2O8,” Jour. Superconductivity, 10, 389–392 (1997).

    Article  ADS  Google Scholar 

  455. J.E. Hoffman, E.W. Hudson, K.M. Lang, V. Madhavan, H. Eisaki, S. Uchida, and J.C. Davis, “A four unit cell periodic pattern of quasi-particle states surrounding vortex cores in Bi2Sr2CaCu2O8+x ,” Science, 295, 466–469 (2002).

    Article  ADS  Google Scholar 

  456. C. Howald, H. Eisaki, N. Kaneko, and A. Kapitulnik, “Coexistence of charged stripes and superconductivity in Bi2Sr2CaCu2O8+δ ,” cond-mat/020156.

    Google Scholar 

  457. J.E. Hoffman, K. McElroy, D.-H. Lee, K.M. Lang, H. Eisaki, S. Uchida, and J.C. Davis, “Imaging quasiparticle quantum interference in BSCCO,” submitted to Science (2002).

    Google Scholar 

  458. E. Fradkin, S.A. Kivelson, E. Manousakis, and K. Nho, “Nematic phase of the two-dimensional electron gas in a magnetic field,” Phys. Rev. Lett, 84, 1982–1985 (2000).

    Article  ADS  Google Scholar 

  459. J. Zaanen, M.L. Horbach, and W.V. Saarloos, “Charged domain-wall dynamics in doped antiferromagnets and spin fluctuations in cuprate superconductors,” Phys. Rev. B, 53, 8671–8680 (1996).

    Article  ADS  Google Scholar 

  460. V. Oganesyan, S.A. Kivelson, and E. Fradkin, “Quantum theory of a nematic Fermi fluid,” Phys. Rev. B, 64, 195109–195114 (2001).

    Article  ADS  Google Scholar 

  461. C. Halboth and W. Metzner, “d-wave superconductivity and Pomeranchuk instability in the two-dimensional Hubbard model,” Phys. Rev. Lett, 85, 5162–5165 (2000).

    Article  ADS  Google Scholar 

  462. V. Hankevych, I. Grote, and F. Wegner, “Pomeranchuk and other instabilities in the t-t’ Hubbard model at the Van Hove filling,” cond-mat/0205213 (2002).

    Google Scholar 

  463. V. Oganesyan, E. Pradkin, and S.A. Kivelson, work in progress (2002).

    Google Scholar 

  464. A. Abanov, V. Kalatsky, and V.L. Pokrovsky, “Phase diagram of ultrathin ferromagnetic films with perpendicular anisotropy,” Phys. Rev. B, 51, 1023–1038 (1995).

    Article  ADS  Google Scholar 

  465. J. Zaanen, O.Y. Osman, H.V. Kruis, Z. Nussinov, and J. Tworzydlo, “The geometric order of stripes and Luttinger liquids,” Phil. Mag. B, 81, 1485–1531 (2002).

    Article  ADS  Google Scholar 

  466. Y.-B. Kim and H.-Y. Kee, “Pairing instability in a nematic Fermi liquid,” cond-mat/0204037 (2002).

    Google Scholar 

  467. K.B. Cooper, M. Lilly, J.P. Eisenstein, L.N. Pfeiffer, and K.W. West, “The onset of anisotropic transport of two-dimensional electrons in high Landau levels: An isotropic-to-nematic liquid crystal phase transition?” cond-mat/0203174 (2002).

    Google Scholar 

  468. V.J. Emery and S. Kivelson, “Mapping of the two-channel Kondo problem to a resonant-level model,” Phys. Rev. B, 46, 10812–10817 (1992).

    Article  ADS  Google Scholar 

  469. V.J. Emery and S.A. Kivelson, “Solution of an orbital Kondo array,” Phys. Rev. Lett, 71, 3701–3704 (1993).

    Article  ADS  Google Scholar 

  470. D. Chang and D.H. Lee, “Transport in inhomogeneous strongly correlated systems,” cond-mat/0205057 (2002).

    Google Scholar 

  471. Z.M. Yusof, B.O. Wells, T. Valla, A.V. Fedorov, P.D. Johnson, Q. Li, C. Kendziora, S. Jian, and D.G. Hinks, “Quasiparticle liquid in the highly overdoped Bi2Sr2CaCu2O8+δ ,” Phys. Rev. Lett., 88, 167006–167009 (2002).

    Article  ADS  Google Scholar 

  472. M. Granath, V. Oganesyan, D. Orgad, and S.A. Kivelson, “Distribution of spectral weight in a system with disordered stripes,” Phys. Rev. B, 65, 184501–184510 (2002).

    Article  ADS  Google Scholar 

  473. M.I. Salkola, V.J. Emery, and S.A. Kivelson, “Implications of charge ordering for single-particle properties of high T c superconductors,” Phys. Rev. Lett., 77, 155–158 (1996).

    Article  ADS  Google Scholar 

  474. M.G. Zacher, R. Eder, E. Arrigoni, and W. Hanke, “Stripes in doped antiferromagnets: single-particle spectral weight,” Phys. Rev. Lett., 85, 2585–2588 (2000).

    Article  ADS  Google Scholar 

  475. M.G. Zacher, R. Eder, E. Arrigoni, and W. Hanke, “Evolution of the stripe phase as a function of doping from a theoretical analysis of angle-resolved photoemission data,” Phys. Rev. B, 65, 045109–045117 (2002).

    Article  ADS  Google Scholar 

  476. M. Vojta, Y. Zhang, and S. Sachdev, “Renormalization group analysis of quantum critical points in d-wave superconductors,” Int. J. Mod. Phys.B, 14, 3719–3734 (2000).

    Article  ADS  Google Scholar 

  477. T. Valla, A.V. Fedorov, P.D. Johnson, B.O. Wells, S.L. Hulbert, Q. Li, G.D. Gu, and N. Koshizuka, “Evidence for quantum critical behavior in the optimally doped cuprate Bi2Sr2CaCu2O8,” Science, 285, 2110–2113 (1999).

    Article  Google Scholar 

  478. Y. Zhang, N.P. Ong, P.W. Anderson, D.A. Bonn, R. Liang, and W.N. Hardy, “Giant enhancement of the thermal Hall conductivity kappa(xy) in the superconductor YBa2Cu3O7,” Phys. Rev. Lett., 86, 890–893 (2001).

    Article  ADS  Google Scholar 

  479. D.A. Bonn, P. Dosanjh, R. Liang, and W.N. Hardy, “Evidence for rapid suppression of quasi-particle scattering below T c in YBa2Cu3O7,” Phys. Rev. Lett, 68, 2390–2393 (1992), see also Ref. 504.

    Article  ADS  Google Scholar 

  480. D.L. Feng, A. Damascelli, K.M. Shen, N. Motoyama, D.H. Lu, H. Eisaki, K. Shimizu, J.i. Shimoyama, K. Kishio, N. Kaneko, M. Greven, G.D. Gu, X.J. Zhou, C. Kim, F. Ronning, N.P. Armitage, and Z.-X. Shen, “Electronic structure of the trilayer cuprate superconductor Bi2Sr2Ca2Cu3O10+δ ,” cond-mat/0108386 (2001).

    Google Scholar 

  481. H.F. Fong, P. Bourges, Y. Sidis, L.P. Regnault, A. Ivanov, G.D. Gul, N. Koshizuka, and B. Keimer, “Neutron scattering from magnetic excitation in Bi2Sr2CaCu2O8+δ ,” Nature, 398, 588–591 (1999).

    Article  ADS  Google Scholar 

  482. M. Dumm, D.N. Basov, S. Komiya, and Y. Ando, “Anistropic electromagnetic response of La1.97Sr0.03CuO4 in the regime of spin stripes,” unpublished (2002).

    Google Scholar 

  483. H.V. Kruis, Z. Nussinov, and J. Zaanen, “Emergent Z 2 gauge symmetry and spin-charge separation in one dimensional physics,” cond-mat/0110055 (2001).

    Google Scholar 

  484. M. Matsuda, M. Fujita, K. Yamada, R.J. Birgeneau, M.A. Kastner, H. Hiraka, Y. Endoh, S. Wakimoto, and G. Shirane, “Static and dynamic spin correlations in the spin-glass phase of slightly doped La2−x SrxCuO4,” Phys. Rev. B, 62, 9148–9154 (2000).

    Article  ADS  Google Scholar 

  485. A.N. Lavrov, Y. Ando, S. Komiya, and I. Tsukada, “Unusual magnetic susceptibility anisotropy in untwinned La2−x SrxCuO4 single crystals in the lightly doped region,” Phys. Rev. Lett., 87, 017007–017010 (2001).

    Article  ADS  Google Scholar 

  486. B. Lake, G. Aeppli, T.E. Mason, A. Schroder, D.F. McMorrow, K. Lefmann, M. Isshiki, M. NO’Hara, H. Takagi, and S.M. Hayden, “Spin gap and magnetic coherence in a clean high-temperature superconductor,” Nature, 400, 43–46 (1999).

    Article  ADS  Google Scholar 

  487. T. Nöda, H. Eisaki, and S.I. Uchida, “Evidence for one-dimensional charge transport in La2−x−yNdySrxCuO4,” Science, 286, 265–268 (1999).

    Article  Google Scholar 

  488. S. Tajima, T. Nöda, H. Eisaki, and S. Uchida, “C-axis optical response in the static stripe ordered phase of the cuprates,” Phys. Rev. Lett., 86, 500–503 (2001).

    Article  ADS  Google Scholar 

  489. I. Iguchi, T. Yamaguchi, and A. Sugimoto, “Diamagnetic activity above T c as a precursor to superconductivity in La2−x SrxCuO4,” Nature, 412, 420–423 (2001).

    Article  ADS  Google Scholar 

  490. Y. Wang, Z. A. Xu, T. Kakeshita, S. Uchida, S. Ono, Y. Ando, and N.P. Ong, “Onset of the vortexlike Nernst signal above T c in La2−x SrxCuO4 and Bi2Sr2−y LaCuO6,” Phys. Rev. B, 64, 224519–224528 (2001).

    Article  ADS  Google Scholar 

  491. Z.A. Xu, N. Ong, Y. Wang, T. Kakeshita, and S. Uchida, “Vortex-like excitations and the onset of superconducting phase fluctuation in underdoped La2−x SrxCuO4,” Nature, 406, 486–488 (2000).

    Article  ADS  Google Scholar 

  492. I. Ussishkin, S.L. Sondhi, and D.A. Huse, “Gaussian superconducting fluctuations, thermal transport, and the Nernst effect,” cond-mat/0204484.

    Google Scholar 

  493. A.G. Loeser, Z.-X. Shen, D.S. Dessau, D.S. Marshall, C.H. Park, P. Fournier, and A. Kapitulnik, “Excitation Gap in the Normal State of Underdoped Bi2Sr2CaCu2O8+δ ,” Science, 273, 325–329 (1996).

    Article  ADS  Google Scholar 

  494. R.S. Decca, H.D. Drew, E. Osquiguil, B. Maiorov, and J. Guimpel, “Anomalous proximity effect in underdoped YBa2Cu3O6+x josephson junctions,” Phys. Rev. Lett., 85, 3708–3711 (2000).

    Article  ADS  Google Scholar 

  495. M.K. Crawford, M.N. Kunchur, W.E. Farneth, and E.M. McCarron, “Anomalous oxygen isotope effect in La2−x SrxCuO4,” Phys. Rev. B, 41, 282–287 (1990).

    Article  ADS  Google Scholar 

  496. J.C. Phillips and J. Jung, “Nanodomain structure and function of high temperature superconductors,” Phil. Mag. B, 81, 745–756 (2001).

    Article  ADS  Google Scholar 

  497. S.A. Kivelson and V.J. Emery, “Stripes and Related Phenomena,” 91 (Kluwer Academic/Plenum Publishing, New York) (2000).

    Google Scholar 

  498. O. Zachar, “Stripes disorder and correlation lengths in doped antiferromagnets,” Phys. Rev. B, 62, 13836–13839 (2000).

    Article  ADS  Google Scholar 

  499. N. Hasselmann, A.H. Castro Neto, C. Morais Smith, and Y. Dimashko, “Striped phase in the presence of disorder and lattice potentials,” Phys. Rev. Lett., 82, 2135 (1999).

    Article  ADS  Google Scholar 

  500. R.T. Scalettar, G.G. Batrouni, A.P. Kampf, and G.T. Zimanyi, “Simultaneous diagonal and off-diagonal order in the Bose-Hubbard Hamiltonian,” Phys. Rev. B, 51, 8467–8480 (1995).

    Article  ADS  Google Scholar 

  501. S.R. White and I. Affleck, “Density matrix renormalization group analysis of the Nagaoka polaron in the two-dimensional t-J model,” Phys. Rev. B, 64, 024411–024416 (2001).

    Article  ADS  Google Scholar 

  502. D.A. Bonn, K. Zhang, S. Kamal, R. Liang, P. Dosanjh, W.N. Hardy, C. Kallin, and A.J. Berlinsky, “Evidence for rapid suppression of quasi-particle scattering below T c in YBa2CuO7-δ ,” Phys. Rev. Lett, 72, 1391–1391 (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Carlson, E.W., Kivelson, S.A., Orgad, D., Emery, V.J. (2004). Concepts in High Temperature Superconductivity. In: Bennemann, K.H., Ketterson, J.B. (eds) The Physics of Superconductors. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18914-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18914-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62352-3

  • Online ISBN: 978-3-642-18914-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics